INFLUí­Å NCIA DE UM "BLEND” DE AMINOÁCIDOS ESSENCIAIS SOBRE O CRESCIMENTO, ATIVIDADE ENZIMÁTICA E HISTOLOGIA INTESTINAL DE ACARÁ DISCO

Autores

DOI:

https://doi.org/10.20950/1678-2305/bip.2021.47.e599

Palavras-chave:

aquaculture;, amino acids;, ornamental fish;, protein;, Symphysodon aequifasciatus.

Resumo

Symphysodon aequifasciatus é um peixe com corpo em forma de disco e cores brilhantes, caracterí­­sticas importantes dos peixes ornamentais. Avaliamos estratégias de suplementação de aminoácidos (AAs) para reduzir a proteí­­na bruta na dieta com relação ao desempenho, atividade das enzimas digestivas, metabolismo hepático e histopatologia intestinal. Um total de 180 peixes foram distribuí­­dos aleatoriamente em 12 aquários de vidro de 50 L, consistindo em um delineamento inteiramente casualizado, com quatro tratamentos (DC í  Dieta controle com 34,4% de proteina bruta; DL - Dieta controle acrescida de 1% de lisina; DEAA í  Dieta controle acrescida de 1% aminoácidos essenciais livres (treonina, fenilalanina, leucina, valina, arginina e triptofano) e DHP í  Dieta com alto ní­­vel de proteí­­na bruta 48,4%), e três repetições, com duração de 60 dias. Os resultados demostraram que a utilização das dietas DL e DEAA refletiram em maior altura de vilosidade intestinal e maior desempenho zootécnico. A utilização de dieta DL promoveu aumento da atividade da fosfatase alcalina e amilase digestiva. A utilização de dietas DHP resultou em alterações hepáticas graves, devido a maior atividade da Alanina aminotransferase. Portanto, foi possí­­vel observar que a utilização de aminoácidos pode suprir a necessidade nutricional de acará disco. A suplementação de dietas com AAs permite a redução da proteí­­na dietética, o que é uma estratégia para o manejo alimentar.

Referências

Albro, P.W.; Hall, R.D.; Corbett, J.T.; Schroeder, J. 1985. Activation of non-specific lipase (EC 3.1.1.-) by bile salts. Biochimica et Biophysica Acta, 835(3): 477-490. https://doi.org/10.1016/0005-2760(85)90117-1.

AOAC í  Association of Official Analytical Chemists. 1999. Official methods of analysis of the association of official analytical chemists, 16th ed. Arlington, D.C: AOAC. 1141p.

Bernfeld, P. 1955. Amylases, α and β. In: Colowick, S.P.; Kaplan, N.O. (eds.). Methods in enzymology. USA: Elsevier. v. 1, p. 149-158. https://doi.org/10.1016/0076-6879(55)01021-5.

Bomfim, M.D.; Lanna, E.A.T.; Donzele, J.L.; Quadros, M.; Ribeiro, F.B.; Sousa, M.P.D. 2010. Ní­­veis de lisina, com base no conceito de proteí­­na ideal, em rações para alevinos de tilápia-do-nilo. Revista Brasileira de Zootecnia, 39(1): 1-8. https://doi.org/10.1590/S1516-35982010000100001.

Botaro, D.; Furuya, W.M.; Silva, L.C.R.; Santos, L.D.D.; Silva, T.S.D.C.; Santos, V.G.D. 2007. Redução de proteí­­na na dieta com base no conceito ideal de proteí­­na para tilápia do Nilo (Oreochromis niloticus) cultivada em viveiro. Revista Brasileira de Zootecnia, 36(3): 517-525. https://doi.org/10.1590/S1516-35982007000300001.

Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2): 248-254. https://doi.org/10.1016/0003-2697(76)90527-3.

Chellapan, A.; Rajagopalsamy, C.B.T.; Jasmine, G.I. 2013. Effect of clove oil and benzocaine on the respiratory metabolism of Angel Fish, Pterophyllum scalare. Indian Journal of Science and Technology, 6(7): 4853-4861. https://doi.org/10.17485/ijst/2013/v6i7.1.

Cheng, Z.J.; Hardy, R.W.; Usry, J.L. 2003. Plant protein ingredients with lysine supplementation reduce dietary protein level in rainbow trout (Oncorhynchus mykiss) diets, and reduce ammonia nitrogen and soluble phosphorus excretion. Aquaculture, 218(1-4): 553-565. https://doi.org/10.1016/S0044-8486(02)00502-1.

Chong, A.S.C.; Hashim, R.; Ali, A.B. 2008. Dietary protein requirements for discus (Symphysodon spp). Aquaculture Nutrition, 6(4): 275-278. https://doi.org/10.1046/j.1365-2095.2000.00151.x.

Chong, A.S.C.; Hashim, R.; Chow-Yang, L.; Ali, A.B. 2002. Partial characterization and activities of proteases from the digestive tract of discus fish (Symphysodon aequifasciata). Aquaculture, 203(3-4): 321-333. https://doi.org/10.1016/S0044-8486(01)00630-5.

Crampton, W.G. 2008. Ecology and life history of an Amazon floodplain cichlid: the discus fish Symphysodon (Perciformes: Cichlidae). Neotropical Ichthyology, 6(4): 599-612. https://doi.org/10.1590/S1679-62252008000400008.

Degani, G. 1993. Growth and body composition of juveniles of Pterophyllum scalare (Lichtenstein) (Pisces; Cichlidae) at different densities and diets. Aquaculture Research, 24(6): 725-730. https://doi.org/10.1111/j.1365-2109.1993.tb00651.x.

Diemer, O.; Bittencourt, F.; Barcellos, L.G.; Boscolo, W.R.; Feiden, A.; Romagosa, E. 2014. Lysine in the diet of Rhamdia voulezi male brood stocks confined in net cages. Aquaculture, 434: 93-99. https://doi.org/10.1016/j.aquaculture.2014.07.029.

Dorce, L.S.; Mendonça, W.C.B.; Siqueira, M.S.; Santos, R.F.B.; Sousa, R.M.; Ziemniczak, H.M.; Honoraro, C.A. 2020. Atividade das enzimas digestivas frente a restrição alimentar de peixes ornamentais. Agrarian, 13(47): 107-113. https://doi.org/10.30612/agrarian.v13i47.9912.

Froese, R.; Pauly, D. 2019. FishBase. World Wide Web electronic publication. Available at: <https://www.fishbase.se/summary/Symphysodon-aequifasciatus.html> Accessed: Jun. 29, 2020.

Honorato, C.A.; De Almeida, L.C.; Da Silva, N.C.; Carneiro, D.J.; Moraes, G. 2010. Effects of processing on physical characteristics of diets with distinct levels of carbohydrates and lipids: the outcomes on the growth of pacu (Piaractus mesopotamicus). Aquaculture Nutrition, 16(1): 91-99. https://doi.org/10.1111/j.1365-2095.2008.00644.x.

Honorato, C.A.; Ushizima, T.T.; Quintana, C.I.F.; Campos, C.M.; Marcondes, V.M.; Nascimento, C.A.; Santamaria, F.M. 2014. Ní­­veis de proteí­­na digestí­­vel para surubim (Pseudoplatystoma sp.) criados em tanque-rede. Semina: Ciências Agrárias, 35(5): 2781-2792. http://dx.doi.org/10.5433/1679-0359.2014v35n5p2781.

Liquori, G.E.; Mastrodonato, M.; Zizza, S.; Ferri, D. 2007. Glycoconjugate histochemistry of the digestive tract of Triturus carnifex (Amphibia, Caudata). Journal of Molecular Histology, 38(3): 191-199. https://doi.org/10.1007/s10735-007-9087-4.

Magouz, F.I.; Dawood, M.A.; Salem, M.F.; El-Ghandour, M.; Van Doan, H.; Mohamed, A.A. 2020. The role of a digestive enhancer in improving the growth performance, digestive enzymes activity, and health condition of Nile tilapia (Oreochromis niloticus) reared under suboptimal temperature. Aquaculture, 526: 735388. https://doi.org/10.1016/j.aquaculture.2020.735388.

McManus, J.F.A. 1948. Histological and histochemical uses of periodic acid. Stain Technology, 23(3): 99-108. https://doi.org/10.3109/10520294809106232.

Meng, X.L.; Li, S.; Qin, C.B.; Zhu, Z.X.; Hu, W.P.; Yang, L.P.; Lu, R.H.; Li, W.J.; Nie, G.X. 2018. Intestinal microbiota and lipid metabolism responses in the common carp (Cyprinus carpio L.) following copper exposure. Ecotoxicology and Environmental Safety, 160: 257-264. https://doi.org/10.1016/j.ecoenv.2018.05.050.

Morales, A.; Buenabad, L.; Castillo, G.; Vázquez, L.; Espinoza, S.; Htoo, J.K.; Cervantes, M. 2017. Dietary levels of protein and free amino acids affect pancreatic proteases activities, amino acids transporters expression and serum amino acid concentrations in starter pigs. Journal of Animal Physiology and Animal Nutrition, 101(4): 723-732. https://doi.org/10.1111/jpn.12515.

Murashita, K.; Matsunaria, H.; Furuita, H.; Rí­¸nnestad, I.; Oku, H.; Yamamoto, T. 2018. Effects of dietary soybean meal on the digestive physiology of red seabream Pagrus major. Aquaculture, 493: 219-228. https://doi.org/10.1016/j.aquaculture.2018.05.005.

NRC í  National Research Council. 2011. Nutrient requirements of warmwater fishes and shellfishes. Washington, D.C.: NRC. 392p.

Nunes, C.S.; Moraes, G.; Fabrizzi, F.; Hackbarth, A.; Arbeláez-Rojas, G.A. 2013. Growth and hematology of pacu subjected to sustained swimming and fed different protein levels. Pesquisa Agropecuária Brasileira, 48(6): 645-650. https://doi.org/10.1590/S0100-204X2013000600010.

Ortiz-Delgado, J.B.; Darias, M.J.; Caí­±avate, J.P.; Yúfera, M.; Sarasquete, C. 2003. Organogenesis of the digestive tract in the white seabream, Diplodus sargus. Histological and histochemical approaches. Histology and Histopathology, 18: 1141-1154. https://doi.org/10.14670/HH-18.1141.

Ota, C.E.; Honorato, C.A.; Heredia-Vieira, S.C.; Flores-Quintana, C.I.; Castro Silva, T.S.; Inoue, L.A.K.A.; Cardoso, C.A.L. 2019. Hepatic and gastroprotective activity of Serjania marginata leaf aqueous extract in Nile tilapia (Oreochromis niloticus). Fish Physiology and Biochemistry, 45: 1051-1065. https://doi.org/10.1007/s10695-019-00622-9.

Park, J.T.; Johnson, M.J. 1949. A sub micro determination of glucose. The Journal of Biological Chemistry, 181: 149-151.

Pujante, I.M.; Dí­­az-López, M.; Mancera, J.M.; Moyano, F.J. 2017. Characterization of digestive enzymes protease and alpha-amylase activities in the thick-lipped grey mullet (Chelon labrosus, Risso 1827). Aquaculture Research, 48(2): 367-376. https://doi.org/10.1111/are.13038.

Reitman, S.; Frankel, S. 1957. A colorimetric method for determination of serum glutamic oxaloacetic and glutamic pyruvic transaminase. American Journal of Clinical Pathology, 28(1): 56-63. https://doi.org/10.1093/ajcp/28.1.56.

Ren, M.; He, J.; Liang, H.; Ji, K.; Ge, X.; Sun, A.; Pan, L.; Masagounder, K. 2019. Use of supplemental amino acids on the success of reducing dietary protein levels for Jian carp (Cyprinus carpio var. Jian). Aquaculture Nutrition, 25(3): 567-576. https://doi.org/10.1111/anu.12879.

Ribeiro, F.D.A.S.; De Lima Preto, B.; Fernandes, J.B.K. 2008. Sistemas de criação para o acará-bandeira (Pterophyllum scalare). Acta Scientiarum. Animal Sciences, 30(4): 459-466. https://doi.org/10.4025/actascianimsci.v30i4.685.

Romarheim, O.H.; Zhang, C.; Penn, M.; Liu, Y.J.; Tian, L.X.; Skrede, A.; Krogdahl, A.; Storebakken, T. 2008. Growth and intestinal morphology in cobia (Rachycentron canadum) fed extruded diets with two types of soybean meal partly replacing fish meal. Aquaculture Nutrition, 14(2): 174-180. https://doi.org/10.1111/j.1365-2095.2007.00517.x.

Saavedra, M.; Pereira, T.G.; Candeias-Mendes, A. 2017. Dietary amino acid profile affects muscle cellularity, growth, survival and ammonia excretion of meagre (Argyrosomus regius) larvae. Aquaculture Nutrition, 24(2): 814-820. https://doi.org/10.1111/anu.12610.

Walter, H.E. 1984. Probionases: methods with haemoglobin casein and azocoll as substrates In: Bergmeyer, H.U. (ed.). Methods of enzymatic analysis. Germany: Verlag Chemie. pp. 270-277.

Wen, B.; Chen, Z.; Qu, H.; Gao, J. 2018. Growth and fatty acid composition of discus fish Symphysodon haraldi given varying feed ratios of beef heart, duck heart, and shrimp meat. Aquaculture and Fisheries, 3(2): 84-89. https://doi.org/10.1016/j.aaf.2018.01.002.

Xiao, W.W.; Feng, L.; Liu, Y.; Jiang, J.; Hu, K.; Jiang, W.D.; Li, S.H.; Zhou, X.Q. 2011. Effects of dietary methionine hydroxy analogue supplement on growth, protein deposition and intestinal enzymes activities of juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture Nutrition, 17(4): 408-417. https://doi.org/10.1111/j.1365-2095.2010.00818.x.

Xu, D.; He, G.; Mai, K.; Wang, Q.; Li, M.; Zhou, H.; Xu, W.; Song, F. 2017. Effect of fish meal replacement by plant protein blend on amino acid concentration, transportation and metabolism in juvenile turbot (Scophthalmus maximus L). Aquaculture Nutrition, 23(5): 1169-1178. https://doi.org/10.1111/anu.12486.

Zambonino Infante, J.L.; Cahu, C.L. 2007. Dietary modulation of some digestive enzymes and Metabolic processes in developing marine fish: Applications to diet formulation. Aquaculture, 268(1-4): 98-105. https://doi.org/10.1016/j.aquaculture.2007.04.032.

Zuanon, J.A.S.; Morais, J.A.; Souza, A.P. 2016. Dietary crude protein levels for juvenile beta. Boletim do Instituto de Pesca, 42(3): 590-597. https://doi.org/10.20950/1678-2305.2016v42n3p590.

Zuanon, J.A.S.; Salaro, A.L.; Moraes, S.S.S.; Alves, L.M.D.O.; Balbino, E.M.; Araújo, E.S. 2009. Dietary protein and energy requirements of juvenile freshwater angelfish. Revista Brasileira de Zootecnia, 38(6): 989-993. https://doi.org/10.1590/S1516-35982009000600003.

Downloads

Publicado

2021-06-24

Edição

Seção

Artigo cientí­fico

Artigos mais lidos pelo mesmo(s) autor(es)