REPRESA BILLINGS (BRASIL): ESTUDOS QUÍMICOS NA ÁGUA E ESTUDOS QUÍMICOS E MORFOLÓGICOS NAS BRÂNQUIAS DE ZEBRAFISH

Autores

DOI:

https://doi.org/10.20950/1678-2305/bip.2021.47.e649

Palavras-chave:

Danio rerio, drinking water, exposure, water quality, water supply

Resumo

Estudos prévios deste grupo de pesquisa revelaram que a água da represa Billings (Brasil) utilizada para consumo humano apresenta contaminação microbiológica e induz danos comportamentais, encefálicos e letalidade em zebrafish. O objetivo deste estudo foi entender o que induziu esses danos no modelo animal. Foram realizadas análises quí­­micas em amostras de água do Rio Pequeno (RP), do Rio Grande (RG) e de Bororé (BO), além de análises quí­­micas e morfológicas nas brí­¢nquias de zebrafish expostos a estas águas. Amostras de água do RP, do RG e de BO apresentaram altos ní­­veis de fósforo. Águas de BO e as brí­¢nquias dos zebrafish expostos a estas águas apresentaram altos ní­­veis de nitrogênio. Águas do RG resultaram em contaminação por potássio nas brí­¢nquias. Fósforo, nitrogênio e potássio são indicadores de poluição antropogênica. Águas do RG e as brí­¢nquias dos zebrafish expostos a estas águas apresentaram baixos ní­­veis de cálcio, um indicativo de problemas na saúde animal. Águas do RG e de BO resultaram em contaminação por zircônio nas brí­¢nquias. Águas de BO induziram espessamento das lamelas respiratórias das brí­¢nquias, que deve ser o mecanismo subjacente para a hipóxia observada. Conclui-se que os danos comportamentais, encefálicos e respiratórios observados anteriormente foram induzidos por distúrbios quí­­micos e morfológicos em decorrência de poluição antropogênica na represa Billings.

Referências

Abollino, O.; Aceto, M.; Malandrino, M.; Mentasti, E.; Sarzanini, C.; Barberis, R. 2002. Distribution and mobility of metals in contaminated sites. chemometric investigation of pollutant profiles. Environmental Pollution, 119(2): 177-193 https://doi.org/10.1016/s0269-7491(01)00333-5.

Aptel, I.; Cance-Rouzaud, A.; Grandjean, H. 1999. Association Between Calcium Ingested from Drinking Water and Femoral Bone Density in Elderly Women: Evidence from the EPIDOS Cohort. Journal of Bone and Mineral Research, 14(5): 829-833 https://doi.org/10.1359/jbmr.1999.14.5.829.

Bacciottini, L.; Tanini, A.; Falchetti, A.; Masi, L.; Franceschelli, F.; Pampaloni, B.; Giorgi, G.; Brandi, M.L. 2004. Calcium bioavailability from a calcium-rich mineral water, with some observations on method. Journal of Clinical Gastroenterology, 38(9): 761-766 https://doi.org/10.1097/01.mcg.0000139031.46192.7e.

Bailey, J.; Oliveri, A.; Levin, E.D. 2013. Zebrafish model systems for developmental neurobehavioral toxicology. Birth Defects Research (Part C), 99(1): 14-23 https://doi.org/10.1002/bdrc.21027.

Brasil, 2005. Ministério do Meio Ambiente. Conselho Nacional do Meio Ambiente. Resolução Conama N° 357, de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Diário Oficial da União, Brasí­­lia, 18 de março de 2005, nº 53, p. 58-63.

Brasil, 2011. Ministério da Saúde. Secretaria de Vigilí­¢ncia em Saúde. Portaria nº 2.914, de 12 de dezembro de 2011. Dispõe sobre os procedimentos de controle e de vigilí­¢ncia da qualidade da água para consumo humano e seu padrão de potabilidade. Diário Oficial da União, Brasí­­lia, 14 de dezembro de 2011, p.34.

Brasil. 2015. SP: com dez vezes mais água que Cantareira, Billings pode ser alternativa. Available at: < https://agenciabrasil.ebc.com.br/geral/noticia/2015-01/com-dez-vezes-mais-agua-que-o-cantareira-billings-pode-ser-alternativa > Accessed: Oct. 17, 2017.

Climatempo. 2015. Ní­­vel dos Mananciais 2015. Available at: <http://www.climatempo.com.br/destaques/tag/reservatorios/> Accessed: Jun. 17, 2015.

Costi, D.; Calcaterra, P.G.; Iori, N.; Vourna, S.; Nappi, G.; Passeri, M. 2014. Importance of bioavailable calcium drinking water for the maintenance of bone mass in post-menopausal women. Journal of Endocrinological Investigation, 22(11): 852-856 https://doi.org/10.1007/BF03343658.

Dalboni, L.C.; Coelho, C.P.; Palombo Pedro, R.R.; Correia, M.S.; de Santana, F.R.; Cardoso, T.N.; Pinto, S.A.G.; Alvares-Saraiva, A.M.; Dutra-Correa, M.; Peres, G.B.; Holandino, C.; Rossi, A.; Cesar, A.T.; Waisse, S.; Bonamin, L.V. 2019. Biological actions, electrical conductance and silicon-containing microparticles of arsenicum album prepared in plastic and glass vials. Homeopathy, 108(1): 12-23. https://doi.org/10.1055/s-0038-1670675.

Dobrovolski, R.; Rattis, L. 2015. Water collapse in Brazil: the danger of relying on what you neglect. Natureza & Conservação. Brazilian Journal of Nature Conservation, 13(1): 80-83. http://dx.doi.org/10.1016/j.ncon.2015.03.006.

Dou, X.; Zhang, Y.; Wang, H.; Wang, T.; Wang, Y. 2011. Performance of granular zirconiumí iron oxide in the removal of fluoride from drinking water. Water Research, 45(12): 3571-3578. https://doi.org/10.1016/j.watres.2011.04.002.

Eaton, A.D.; Clesceri, L.S.; Rice, E.W.; Greenberg, A.E.; Franson, M.A.H. 2005. Standard Methods for the Examination of Water and Wastewater: Centennial Edition. 21st ed. Washington, D.C.: American Public Health Association.

EPA, 2018. Drinking Water Standards and Health Advisories Table. In: United States Environmental Protection Agency - USEPA (ed.). Office of Water U.S. Environmental Protection Agency, Washington, DC, 18p.

Esteves, F.A. 2011. Fundamentos de Limnologia. 3rd ed. Rio de Janeiro: Editora ‏Interciência, 826p.

Gao, Y.; Yu, G.; Luo, C.; Zhou, P. 2012. Groundwater nitrogen pollution and assessment of its health risks: a case study of a typical village in rural-urban continuum, China. PLoS One, 7(4): e33982. https://doi.org/10.1371/journal.pone.0033982.

Gemelgo, M.C.; Mucci, J.L.; Navas-Pereira, D. 2009. Population dynamics: seasonal variation of phytoplankton functional groups in brazilian reservoirs (Billings and Guarapiranga, São Paulo). Brazilian Journal of Biology, 69(4): 1001-1013. https://doi.org/10.1590/S1519-69842009000500004.

Ghosh, S.; Sharma, A.; Talukder, G. 1992. Zirconium. An abnormal trace element in biology. Biological Trace Element Research, 35(3): 247-271. https://doi.org/10.1007/BF02783770.

Heaney, R.P. 2006. Absorbability and utility of calcium in mineral waters. The American Journal of Clinical Nutrition, 84(2): 371-374. https://doi.org/10.1093/ajcn/84.2.371.

Hill, A.J.; Teraoka, H.; Heideman, W.; Peterson, R.E. 2005. Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicological Sciences, 86(1): 6-19. https://doi.org/10.1093/toxsci/kfi110.

Hortellani, M.A.; Sarkis, J.E.; Menezes, L.C.B.; Bazante-Yamaguishi, R.; Pereira, A.S.A.; Garcia, P.F.G.; Maruyama, L.S.; Castro, P.M.G. 2013. Assessment of metal concentration in the billings reservoir sediments, São Paulo State, Southeastern Brazil. Journal of the Brazilian Chemical Society, 24(1): 58-67. https://doi.org/10.1590/S0103-50532013000100009.

Huang, X.; Chen, H.; Xia, F.; Wang, Z.; Mei, K.; Shang, X.; Liu, Y.; Dahlgren, R.; Zhang, M.; Huang, H. 2018. Assessment of Long-Term Watershed Management on Reservoir Phosphorus Concentrations and Export Fluxes. International Journal of Environmental Research and Public Health, 15(10): 2169. https://doi.org/10.3390/ijerph15102169.

Ismail, N.A.H.; Wee, S.Y.; Aris, A.Z. 2017. Multi-class of endocrine disrupting compounds in aquaculture ecosystems and health impacts in exposed biota. Chemosphere, 188: 375-388. https://doi.org/10.1016/j.chemosphere.2017.08.150.

Kalueff, A.V.; Gebhardt, M.; Stewart, A.M.; Cachat, J.M.; Brimmer, M.; Chawla, J.S.; Craddock, C.; Kyzar, E.J.; Roth, A.; Landsman, S.; Gaikwad, S.; Robinson, K.; Baatrup, E.; Tierney, K.; Shamchuk, A.; Norton, W.; Miller, N.; Nicolson, T.; Braubach, O.; Gilman, C.P.; Pittman, J.; Rosemberg, D.B.; Gerlai, R.; Echevarria, D.; Lamb, E.; Neuhauss, S.C.; Weng, W.; Bally-Cuif, L.; Schneider, H. 2013. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish, 10(1): 70-86. https://doi.org/10.1089/zeb.2012.0861.

Kalueff, A.V.; Stewart, A.M.; Gerlai, R. 2014. Zebrafish as an emerging model for studying complex brain disorders. Trends in Pharmacological Sciences, 35(2): 63-75 https://doi.org/10.1016/j.tips.2013.12.002.

Karthiga, P.; Ponnanikajamideen, M.; Rajendran, R.S.; Annadurai, G.; Rajeshkumar, S. 2019. Characterization and toxicology evaluation of zirconium oxide nanoparticles on the embryonic development of zebrafish, Danio rerio. Drug and Chemical Toxicology, 42(1): 104-111. https://doi.org/10.1080/01480545.2018.1523186.

Leme, E.; Silva, E.P.; Rodrigues, P.S.; Silva, I.R.; Martins, M.F.M.; Bondan, E.F.; Bernardi, M.M.; Kirsten, T.B. 2018. Billings reservoir water used for human consumption presents microbiological contaminants and induces both behavior impairments and astrogliosis in zebrafish. Ecotoxicology and Environmental Safety, 161: 364-373. https://doi.org/10.1016/j.ecoenv.2018.06.009.

Liu, Y.; Zhu, Y.; Qiao, X.; Zheng, B.; Chang, S.; Fu, Q. 2018. Investigation of nitrogen and phosphorus contents in water in the tributaries of Danjiangkou Reservoir. Royal Society Open Science, 5(1): 170624. https://doi.org/10.1098/rsos.170624.

Martinez-Sales, M.; Garcia-Ximenez, F.; Espinos, F.J. 2015. Zebrafish as a possible bioindicator of organic pollutants with effects on reproduction in drinking waters. Journal of Environmental Sciences, 33(1): 254-260. https://doi.org/10.1016/j.jes.2014.11.012.

Matey, V.; Richards, J.G.; Wang, Y.; Wood, C.M.; Rogers, J.; Davies, R.; Murray, B.W.; Chen, X.Q.; Du, J.; Brauner, C.J. 2008. The effect of hypoxia on gill morphology and ionoregulatory status in the Lake Qinghai scaleless carp, Gymnocypris przewalskii. Journal of Experimental Biology, 211(7): 1063-1074. https://doi.org/10.1242/jeb.010181.

Nestler, A.; Berglund, M.; Accoe, F.; Duta, S.; Xue, D.; Boeckx, P.; Taylor, P. 2011. Isotopes for improved management of nitrate pollution in aqueous resources: review of surface water field studies. Environmental Science and Pollution Research International, 18(4): 519-533. http://dx.doi.org/10.1007/s11356-010-0422-z.

Niagolova, N.; McElmurry, S.P.; Voice, T.C.; Long, D.T.; Petropoulos, E.A.; Havezov, I.; Chou, K.; Ganev, V. 2005. Nitrogen species in drinking water indicate potential exposure pathway for Balkan Endemic Nephropathy. Environmental Pollution, 134(2): 229-237. https://doi.org/10.1016/j.envpol.2004.08.003.

Person Le Ruyet, J.; Boeuf, G.; Zambonino Infante, J.; Helgason, S.; Le Roux, A. 1998. Short-term physiological changes in turbot and seabream juveniles exposed to exogenous ammonia. Comparative Biochemistry and Physiology, Part A: Molecular & Integrative Physiology, 119(2): 511-518. https://doi.org/10.1016/S1095-6433(97)00458-3.

Quattrini, S.; Pampaloni B.; Brandi, M.L. 2016. Natural mineral waters: chemical characteristics and health effects. Clinical Cases in Mineral and Bone Metabolism, 13(3): 173-180.

Rodrigues, G.Z.P.; Machado, A.B.; Gehlen, G. 2019. Influência de metais no comportamento reprodutivo de peixes, revisão bibliográfica. Revista Geama, 5(1): 4-13.

Rodrigues, L.L.; Sant’anna, C.L.; Tucci, A. 2010. Chlorophyceae das Represas Billings (Braço Taquacetuba) e Guarapiranga, SP, Brasil. Brazilian Journal of Botany, 33(2): 247-264. https://doi.org/10.1590/S0100-84042010000200006.

Roux, S.; Baudoin, C.; Boute, D.; Brazier, M.; De La Gueronniere, V.; De Vernejoul, M.C. 2004. Biological effects of drinking-water mineral composition on calcium balance and bone remodeling markers. The Journal of Nutrition, Health and Aging, 8(5): 380-384.

SABESP. 2015a. Crise hí­­drica, estratégia e soluções da SABESP. 95p. Available at: <http://www.sigrh.sp.gov.br/public/uploads/documents/8934/chess-crise-hidrica-estrategia-e-solucoes-da-sabesp-para-a-rmsp.pdf>. Accessed: Jul. 09, 2015.

SABESP. 2015b. Os 85 anos da Represa Billings. Disponí­­vel em: <http://www.sabesp.com.br/CalandraWeb/CalandraRedirect/?db=&docid=79B27DEE3C53E2F2832576F50052351A&proj=AgenciaNoticias&pub=T&temp=4> Accessed: Jul. 08, 2015.

SABESP. 2016. Controle de perdas. Available at: <http://site.sabesp.com.br/site/interna/Default.aspx?secaoId=37> Accessed: Nov. 21, 2017.

Shahid, M.; Ferrand, E.; Schreck, E.; Dumat, C. 2013. Behavior and impact of zirconium in the soilí plant system: plant uptake and phytotoxicity. In: Whitacre D. (ed.). Reviews of Environmental Contamination and Toxicology, Springer, New York, NY, v. 221, pp.107-127. https://doi.org/10.1007/978-1-4614-4448-0_2.

Sisinno, C.L.S.; Oliveira-Filho, E.C. 2013. Princí­­pios de toxicologia ambiental. 1st ed., Rio de Janeiro: Editora Interciência, 216p.

Sousa, V.A.S.; Silva, D.R.M. 2014. Abastecimento público de água da região metropolitana de São Paulo. Revista Interação, X(2): 10-28.

Twitchen, I.D.; Eddy, F.B., 1994. Sublethal effects of ammonia on freshwater fish. In: Müller, R., Lloyd, R. (eds.). Sublethal and Chronic Effects of Pollutants on Freshwater Fish. Blackwell Scientific Publications, Fishing New Books, Londres, UK, pp. 135-147.

van Dam, R.A.; Hogan, A.C.; McCullough, C.D.; Houston, M.A.; Humphrey, C.L.; Harford, A.J. 2010. Aquatic toxicity of magnesium sulfate, and the influence of calcium, in very low ionic concentration water. Environmental Toxicology and Chemistry, 29(2): 410-421 https://doi.org/10.1002/etc.56.

Wayland, K.G.; Long, D.T.; Hyndman, D.W.; Pijanowski, B.C.; Woodhams, S.M.; Haack, S.K. 2003. Identifying relationships between baseflow geochemistry and land use with synoptic sampling and R-mode factor analysis. Journal of Environmental Quality, 32(1): 180-190. https://doi.org/10.2134/jeq2003.1800.

Wengrat, S.; Bicudo, D.C. 2011. Spatial evaluation of water quality in an urban reservoir (Billings Complex, southeastern Brazil). Acta Limnologica Brasiliensia, 23(2): 200-216. https://doi.org/10.1590/S2179-975X2011000200010.

Yang, C.-Y.; Chiu, H.-F.; Chang, C.-C.; Wu, T.-N.; Sung, F.-C. 2002. Association of Very Low Birth Weight with Calcium Levels in Drinking Water. Environmental Research, 89(3): 189-194. https://doi.org/10.1006/enrs.2002.4369.

Yang, C.Y.; Cheng, M.F.; Tsai, S.S.; Hsieh, Y.L. 1998. Calcium, magnesium, and nitrate in drinking water and gastric cancer mortality. Japanese Journal of Cancer Research, 89(2): 124-130. https://doi.org/10.1111/j.1349-7006.1998.tb00539.x.

Yang, C.Y.; Chiu, H.F.; Cheng, M.F.; Hsu, T.Y.; Wu, T.N. 2000. Calcium and magnesium in drinking water and the risk of death from breast cancer. Journal of Toxicology and Environmental Health Part A, 60(4): 231-241.

Zheng, M.; Sheng, Y.; Sun, R.; Tian, C.; Zhang, H.; Ning, J.; Sun, Q.; Li, Z.; Bottrell, S.H.; Mortimer, R.J.G. 2017. Identification and Quantification of Nitrogen in a Reservoir, Jiaodong Peninsula, China. Water Environment Research, 89(4): 369-377.

Downloads

Publicado

2021-12-29

Edição

Seção

Artigo cientí­fico

Artigos mais lidos pelo mesmo(s) autor(es)