Inclusão de hidrolisado proteico extraído do bycatch na dieta do camarão-gigante-damalásia: efeitos na fisiologia

Autores

DOI:

https://doi.org/10.20950/1678-2305/bip.2024.50.e884

Palavras-chave:

Carcinicultura, Macrobrachium, Fauna acompanhante, Bioprospecção marinha

Resumo

Bycatch refere-se a todos os animais capturados com espécies de interesse econômico. Esses animais economicamente pouco atrativos são posteriormente descartados no mar. Nosso grupo de pesquisa extraiu um hidrolisado proteico com potencial antioxidante das duas principais espécies de peixes (Paralonchurus brasiliensis e Micropogonias furnieri) da fauna acompanhante da pesca do camarão do litoral de São Paulo, Brasil. Este estudo testou a inclusão de diferentes concentrações de hidrolisado (0,0, 2,5, 5,0 e 10,0%) na dieta de Macrobrachium rosenbergii. Sobrevivência, crescimento e processos fisiológicos (ingestão, defecação, índice hepatossomático, razão O:N, metabolismo e excreção de amônia) foram avaliados. A inclusão de hidrolisado não afetou parâmetros cruciais para a aquicultura, como sobrevivência, crescimento (2% em relação à biomassa inicial), ingestão e mecanismos relacionados à obtenção e ao uso de energia (índice hepatossomático e proteína como principal tipo de substrato energético oxidado). O metabolismo e a excreção de nitrogênio foram reduzidos (~70%) em todos os tratamentos com hidrolisado, sugerindo menores requisitos de energia para digestão e absorção de nutrientes, bem como a otimização do uso de proteína animal. Recomendamos a inclusão de 2,5% de hidrolisado para trabalhos futuros para testar a capacidade antioxidante do hidrolisado em M. rosenbergii. Esse nível de concentração não altera parâmetros fisiológicos importantes e possui melhor custo-benefício.

Referências

Ahmad, A., Abdullah, S. R. S., Hasan, H. A., Othman, A. R., & Ismail, N. I. (2021). Aquaculture industry: Supply and demand, best practices, effluent and its current issues and treatment technology. Journal of Environmental Management, 287, 112271. https://doi.org/10.1016/j.jenvman.2021.112271

Aklakur, M. (2018). Natural antioxidants from sea: A potential industrial perspective in aquafeed formulation. Reviews in Aquaculture, 10(2), 385-399. https://doi.org/10.1111/raq.12167

Alves, D. R. S., Oliveira, S. R., Luczinski, T. G., Boscolo, W. R., Bittencourt, F., Signor, A., & Detsch, D. T. (2020). Attractability and palatability of liquid protein hydrolysates for Nile tilapia juveniles. Aquaculture Research, 51(4),1681-1688. https://doi.org/10.1111/are.14514

Augusto, A., & Masui, D. C. (2014). Sex and reproductive stage differences in the growth, metabolism, feed, fecal production, excretion and energy budget of the Amazon River prawn (Macrobrachium amazonicum). Marine and Freshwater Behaviour and Physiology, 47(6), 373-388. https://doi.org/10.1080/10236244.2014.942547

Augusto, A., & Valenti, W. C. (2016). Are there any physiological differences between the male morphotypes of the freshwater shrimp Macrobrachium amazonicum (Caridea: Palaemonidae)? Journal of Crustacean Biology, 36(5), 716-723. https://doi.org/10.1163/1937240X-00002467

Augusto, A., New, M. B., Santos, M. R., Amorim, R. V., & Valenti, W. C. (2020). Energy budget and physiology in early ontogenetic stages of the Amazon river prawn. Aquaculture Reports, 18, 100446. https://doi.org/10.1016/j.aqrep.2020.100446

Aziz, D., Rahi, M. L., Hurwood, D. A., & Mather, P. B. (2018). Analysis of candidate gene expression patterns of adult male Macrobrachium rosenbergii morphotypes in response to a social dominance hierarchy. Hydrobiologia, 825(1), 121-136. https://doi.org/10.1007/s10750-018-3721-x

Bochini, G. L., Stanski, G., Castilho, A. L., & Costa, R. C. (2019). The crustacean bycatch of seabob shrimp Xiphopenaeus kroyeri (Heller, 1862) fisheries in the Cananéia region, southern coast of São Paulo, Brazil. Regional Studies in Marine Science, 31, 100799. https://doi.org/10.1016/j.rsma.2019.100799

Camargo, T. R., Ramos, P., Monserrat, J. M., Prentice, C., Fernandes, C. J., Zambuzzi, W. F., & Valenti, W. C. (2021). Biological activities of the protein hydrolysate obtained from two fishes common in thefisheries bycatch. Food Chemistry, 342, 128361. https://doi.org/10.1016/j.foodchem.2020.128361

Chen, S. M., & Chen, J. C. (2003). Effects of pH on survival, growth, molting and feeding of giant freshwater prawn Macrobrachium rosenbergii. Aquaculture, 218(1-4), 613-623. https://doi.org/10.1016/S0044-8486(02)00265-X

Coelho, R. T. I., Yasumaru, F. A., Passos, M. J. A. C. R., Gomes, V., & Lemos, D. (2019). Energy budgets for juvenile Pacific whiteleg shrimp Litopenaeus vannamei fed different diets. Brazilian Journal of Oceanography, 67. https://doi.org/10.1590/S1679-87592019024306701

Cruz-Suárez, L. E., Tapia-Salazar, M., Villarreal-Cavazos, D., Beltran-Rocha, J., Nieto-López, M. G., Lemme, A., & Ricque- Marie, D. (2009). Apparent dry matter, energy, protein and amino acid digestibility of four soybean ingredients in white shrimp Litopenaeus vannamei juveniles. Aquaculture, 292(1-2), 87-94. https://doi.org/10.1016/j.aquaculture.2009.03.026

Food and Agriculture Organization (FAO). (2022). The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. FAO. https://doi.org/10.4060/cc0461en

Gao, R., Yu, Q., Shen, Y., Chu, Q., Chen, G., Fen, S., Yang, M., Yuan, L., McClements, D. J., & Sun, Q. (2021). Production, bioactive properties, and potential applications of fish protein hydrolysates: Developments and challenges. Trends in Food Science & Technology, 110, 687-699. https://doi.org/10.1016/j.tifs.2021.02.031

González-Peña, M. D. C., & Moreira, M. D. G. B. S. (2003). Effect of dietary cellulose level on specific dynamic action and ammonia excretion of the prawn Macrobrachium rosenbergii (De Man 1879). Aquaculture Research, 34(10), 821-827. https://doi.org/10.1046/j.1365-2109.2003.00887.x

Gunathilaka, B. E., Khosravi, S., Herault, M., Fournier, V., Lee, C., Jeong, J. B., & Lee, K. J. (2020). Evaluation of shrimp or tilapia protein hydrolysate at graded dosages in low fish meal diet for olive flounder (Paralichthys olivaceus). Aquaculture Nutrition, 26(5), 1592-1603. https://doi.org/10.1111/anu.13105

Gunathilaka, B. E., Khosravi, S., Shin, J., Shin, J., Herault, M., Fournier, V., & Lee, K. J. (2021). Evaluation of shrimp protein hydrolysate and krill meal supplementation in low fish meal diet for red seabream (Pagrus major). Fisheries and Aquatic Sciences, 24(3), 109-120. https://doi.org/10.47853/FAS.2021.e11

Gunathilaka, B. E., Kim, S., Herault, M., Fournier, V., & Lee, K. J. (2022). Marine protein hydrolysates as a substitute of squid-liver powder in diets for Pacific white shrimp (Litopenaeus vannamei). Aquaculture Research, 53(11), 4059-4068. https://doi.org/10.1111/are.15907

Ha, N., Cipriani, L. A., Oliveira, N. S., Uczay, J., Pessatti, M. L., & Fabregat, T. E. H. P. (2022). Peptide profile of the sardine protein hydrolysate affects food utilization and intestinal microbiota of Nile tilapia. Aquaculture International, 30(1), 365-382. https://doi.org/10.1007/s10499-021-00804-4

He, Y., Liu, X., Zhang, N., Wang, S., Wang, A., Zuo, R., & Jiang, Y. (2022). Replacement of commercial feed with fresh black soldier fly (Hermetia illucens) larvae in Pacific white shrimp (Litopenaeus vannamei). Aquaculture Nutrition. https://doi.org/10.1155/2022/9130400

Hlordzi, V., Wang, J., Kuebutornye, F. K., Yang, X., Tan, B., Li, T., Cui, Z., Lv, S., Lao, T., & Chi, S. (2022). Hydrolysed fish protein powder is better at the growth performance, hepatopancreas and intestinal development of Pacific white shrimp (Litopenaeus vannamei). Aquaculture Reports, 23, 101025. https://doi.org/10.1016/j.aqrep.2022.101025

Ibrahim, S., Zhong, Z., Lan, X., Luo, J., Tang, Q., Xia, Z., Yi, S., & Yang, G. (2023). Morphological Diversity of Different Male Morphotypes of Giant Freshwater Prawn Macrobrachium rosenbergii (De Man, 1879). Aquaculture Journal, 3(2), 133-148. https://doi.org/10.3390/aquacj3020012

Jain, A., & Tailor, V. (2020). Emerging Trends of Biotechnology in Marine Bioprospecting: A New Vision. In: Nathani, N. M., Mootapally, C., Gadhvi, I. R., Maitreya, B., & Joshi, C. G. (eds.). Marine Niche: Applications in Pharmaceutical Sciences (pp. 1-36). Springer.

Karplus, I. (2005). Social control of growth in Macrobrachium rosenbergii (De Man): a review and prospects for future research. Aquaculture Research, 36(3), 238-254. https://doi.org/10.1111/j.1365-2109.2005.01239.x

Koroleff, F. (1983). Determination of ammonia. In: Grasshoff, K., Ehrhardt, M., & Kremling, K. (Eds.), Methods of seawater analysis (2ª ed., pp. 150-157). Verlag Chemie.

Lewison, R. L., Crowder, L. B., Read, A. J., & Freeman, S. A. (2004). Understanding impacts of fisheries bycatch on marine megafauna. Trends in Ecology & Evolution, 19(11), 598-604. https://doi.org/10.1016/j.tree.2004.09.004

Mantoan, P., Ballester, E., Ramaglia, A. C., & Augusto, A. (2021). Diet containing 35% crude protein improves energy balance, growth, and feed conversion in the Amazon river prawn, Macrobrachium amazonicum. Aquaculture Reports, 21, 100962. https://doi.org/10.1016/j.aqrep.2021.100962

Mayzaud, P., & Conover, R. J. (1988). O:N atomic ratio as a tool to describe zooplankton metabolism. Marine ecology progress series. Oldendorf, 45(3), 289-302. https://doi.org/10.3354/meps045289

Moreira G. S., McNamara J. C., Shumway S. E., & Moreira P. S. (1983). Osmoregulation and respiratory metabolism in Brazilian Macrobrachium (Decapoda, Palaemonidae). Comparative Biochemistry and Physiology Part A: Molecular and Integrative Biology, 74(1), 57-62. https://doi.org/10.1016/0300-9629(83)90711-9

Nik Sin, N. N., Mustafa, S., Suyono, & Shapawi, R. (2021). Efficient utilization of poultry by-product meal-based diets when fed to giant freshwater prawn, Macrobrachium rosenbergii. Journal of Applied Aquaculture, 33(1), 53-72. https://doi.org/10.1080/10454438.2019.1709599

Pallaoro, M. F., Nascimento Vieira, F., & Hayashi, L. (2016). Ulva lactuca (Chlorophyta Ulvales) as co-feed for Pacific white shrimp. Journal of Applied Phycology, 28, 3659- 3665. https://doi.org/10.1007/s10811-016-0843-2

Perroca, J. F., Rodrigues Filho, J. L., Fransozo, A., & Costa, R. C. (2022). Variations in pink-shrimps Farfantepenaeus brasiliensis and F. paulensis juvenile abundance: clarifying ecological patterns and providing subsidies to management in shallow marine ecosystems. Fisheries Research, 256, 106482. https://doi.org/10.1016/j.fishres.2022.106482

Pillai, B. R., & Diwan, A. D. (2002). Effects of acute salinity stress on oxygen consumption and ammonia excretion rates of the marine shrimp Metapenaeus monoceros. Journal of Crustacean Biology, 22(1), 45-52. https://doi.org/10.1163/20021975-99990207

Rajaram, V., Jannathulla, R., Ambasankar, K., & Dayal, J. S. (2022). Oxygen consumption in relation to nitrogen metabolism in Black tiger shrimp, Penaeus monodon (Fabricius, 1798), fed fresh food and formulated feed. Aquaculture Research, 53(6), 2237-2248. https://doi.org/10.1111/are.15742

Ramaglia, A. C., Castro, L. M., & Augusto, A. (2018). Effects of ocean acidification and salinity variations on the physiology of osmoregulating and osmoconforming crustaceans. Journal of Comparative Physiology B, 188(5), 729-738.https://doi.org/10.1007/s00360-018-1167-0

Ranjeet, K., & Kurup, B. M. (2002). Heterogeneous individual growth of Macrobrachium rosenbergii male morphotypes. The ICLARM Quarterly, 25(2), 13-18.

Siddik, M. A., Howieson, J., Fotedar, R., & Partridge, G. J. (2021). Enzymatic fish protein hydrolysates in finfish aquaculture: a review. Reviews in Aquaculture, 13(1), 406-430. https://doi.org/10.1111/raq.12481

Signor, A. A., Boscolo, W. R., Potrich, F. R., Signor, A., Bittencourt, F., & Feiden, A. (2011). Rações farelada, peletizada e extrusada na produção de exemplares juvenis de tilápia do Nilo. Revista Cultivando o Saber, 4(3), 20-31.

Soares, M., Rezende, P. C., Correa, N. M., Rocha, J. S., Martins, M. A., Andrade, T. C., Fracalossi, D. M., & Nascimento Vieira, F. (2020). Protein hydrolysates from poultry byproduct and swine liver as an alternative dietary protein source for the Pacific white shrimp. Aquaculture Reports, 17, 100344. https://doi.org/10.1016/j.aqrep.2020.100344

Soares, R., Peixoto, S., Galkanda-Arachchige, H. S., & Davis, D. A. (2021). Growth performance and acoustic feeding behavior of two size classes of Litopenaeus vannamei fed pelleted and extruded diets. Aquaculture International, 29(1), 399-415. https://doi.org/10.1007/s10499-020-00636-8

Suma, A. Y., Nandi, S. K., Abdul Kari, Z., Goh, K. W., Wei, L. S., Tahiluddin, A. B., Seguin, P., Herault, M., Al Mamun, A., Téllez-Isaías, G., & Anamul Kabir, M. (2023). Beneficial Effects of Graded Levels of Fish Protein Hydrolysate (FPH) on the Growth Performance, Blood Biochemistry, Liver and Intestinal Health, Economics Efficiency, and Disease Resistance to Aeromonas hydrophila of Pabda (Ompok pabda) Fingerling. Fishes, 8(3), 147. https://doi.org/10.3390/fishes8030147

Suratip, N., Charoenwattanasak, S., Klahan, R., Herault, M., & Yuangsoi, B. (2023). An investigation into the effects of using protein hydrolysate in low fish meal diets on growth performance, feed utilization and health status of snakehead fish (Channa striata) fingerling. Aquaculture Reports, 30,101623. https://doi.org/10.1016/j.aqrep.2023.101623

Thorne, L. H., Baird, R. W., Webster, D. L., Stepanuk, J. E., & Read, A. J. (2019). Predicting fisheries bycatch: A case study and field test for pilot whales in a pelagic longline fishery. Diversity and Distributions, 25(6), 909-923.https://doi.org/10.1111/ddi.12912

Vogt, G. (2019). Functional cytology of the hepatopancreas of decapod crustaceans. Journal of Morphology, 280(9),1405-1444. https://doi.org/10.1002/jmor.21040

Wang, A., Wang, W., Wang, Y., Shang, L., Liu, Y., & Sun, R. 2003. Effect of dietary vitamin C supplementation on the oxygen consumption, ammonia-N excretion and Na+/K+ ATPase of Macrobrachium nipponense exposed to ambient ammonia. Aquaculture, 220(1-4), 833-841. https://doi.org/10.1016/S0044-8486(02)00536-7

Wangari, M. R., Gao, Q., Sun, C., Liu, B., Song, C., Tadese, D. A., Zhou, Q., Zhang, H., & Liu, B. (2021). Effect of dietary Clostridium butyricum and different feeding patterns on growth performance, antioxidant and immune capacity in freshwater prawn (Macrobrachium rosenbergii). Aquaculture Research, 52(1), 12-22. https://doi.org/10.1111/are.14865

Wei, H., Tan, B., Yang, Q., Mao, M., Lin, Y., & Chi, S. (2023). Growth, nonspecific immunity, intestinal flora, hepatopancreas, and intestinal histological results for Litopenaeus vannamei fed with diets supplement with different animal by-products. Aquaculture Reports, 29,101521.https://doi.org/10.1016/j.aqrep.2023.101521

Werner, T. B., Northridge, S., Press, K. M., & Young, N. (2015). Mitigating bycatch and depredation of marine mammals in longline fisheries. ICES Journal of Marine Science, 72(5), 1576-1586. https://doi.org/10.1093/icesjms/fsv092

Xue, H. B., Wu, X. J., Li, Z. H., Liu, Y., Yin, X. L., Wang, W. N. (2021). Correlation and causation between the intestinal microbiome and male morphotypes in the giant freshwater prawn Macrobrachium rosenbergii. Aquaculture, 531, 735936. https://doi.org/10.1016/j.aquaculture.2020.735936

Yu, Q., Han, F., Huang, M., Wang, X., Qin, J. G., Chen, L., & Li, E. (2023). The effects of dietary myo-inositol on growth and physiological, biochemical, and molecular responses in the Pacific white shrimp Litopenaeus vannamei. Aquaculture, 568, 739323. https://doi.org/10.1016/j.aquaculture.2023.739323

Zhou, Y., Thirumurugan, R., Wang, Q., Lee, C. M., & Davis, D. A. (2016). Use of dry hydrolysate from squid and scallop product supplement in plant based practical diets for Pacific white shrimp Litopenaeus vannamei. Aquaculture, 465, 53-59. https://doi.org/10.1016/j.aquaculture.2016.08.028

Downloads

Publicado

2024-09-25

Edição

Seção

Artigo cientí­fico