Cultivo do gastrópode Pomacea dolioides (Reeve, 1856): efeitos do cálcio no crescimento, sobrevivência e regeneração da concha

Autores

  • Rafaela Fernanda Batista Ferreira Universidade Federal do Amazonas – Instituto de Ciências Exatas e Tecnologia, Programa de Pós-Graduação em Ciência e Tecnologia para Recursos Amazônicos – Itacoatiara (AM), Brasil. https://orcid.org/0009-0007-7465-5850
  • Fernando José Zara Universidade Estadual Paulista – Departamento de Biologia, Laboratório de Morfologia de Invertebrados – Jaboticabal (SP), Brasil. https://orcid.org/0000-0002-7664-7674
  • Bruno Sampaio Sant'Anna Universidade Federal do Amazonas – Instituto de Ciências Exatas e Tecnologia, Programa de Pós-Graduação em Ciência e Tecnologia para Recursos Amazônicos – Itacoatiara (AM), Brasil. https://orcid.org/0000-0001-9689-4894

DOI:

https://doi.org/10.20950/1678-2305/bip.2024.51.e933

Palavras-chave:

Pomacea, Crescimento, Regeneração, Aquicultura

Resumo

Gastrópodes do gênero Pomacea são explorados para alimentação em diferentes partes do mundo. Pomacea dolioides recentemente tem recebido atenção sobre sua densidade de estoque e características da carne, permanecendo uma lacuna sobre os efeitos do cálcio no seu cultivo. O presente estudo avaliou a influência do cálcio dissolvido na água no cultivo do gastrópode P. dolioides considerando crescimento, peso, sobrevivência, ultraestrutura e tempo de regeneração na concha. Juvenis foram distribuídos em seis tratamentos com diferentes concentrações de Ca2+. O cálcio dissolvido na água foi essencial. Gastrópodes não sobreviveram mais de 40 dias sem cálcio. Também, apresentaram maior crescimento e engorda com 60 mg*L-1 de CaSO4 ou mais, em adição a uma concha mais grossa com duas camadas de cristais. O carbonato de cálcio contido na concha foi significantemente maior no tratamento com 80 mg*L-1 de CaSO4. O tempo de regeneração não diferiu entre os tratamentos. Com base nestes resultados, pôde-se concluir que o cálcio dissolvido na água influencia no cultivo do gastrópode P. dolioides em relação a comprimento, peso inorgânico e orgânico e cálcio do gastrópode, e 80 mg*L-1 de CaSO4 é a concentração ideal para cultivar essa espécie.

Referências

Baird, R., Rice, E., & Eaton, A. (2017). Standard methods for the examination of water and wastewaters. In C. E. W. Rice, A. D. Eaton, & American Water Works Association (Eds.), Water Environment Federation, American Public Health Association (pp. 71-90).

Brodersen, J., & Madsen, H. (2003). The effect of calcium concentration on the crushing resistance, weight and size of Biomphalaria sudanica (Gastropoda: Planorbidae). Hydrobiologia, 490, 181-186. https://doi.org/10.1023/A:1023495326473

Bukowski, S. J., & Auld, J. R. (2014). The effects of calcium in mediating the inducible morphological defenses of a freshwater snail, Physa acuta. Aquatic Ecology, 48(1), 85-90. https://doi.org/10.1007/s10452-013-9468-6

Cadée, G. C. (2011). Hydrobia as ‘Jonah in the whale’: Shell repair after passing through the digestive tract of shelducks alive. Palaios, 26(4), 245-249. https://doi.org/10.2110/palo.2010.p10-095r

Dalesman, S., Braun, M. H., & Lukowiak, K. (2011). Low environmental calcium blocks long-term memory formation in a freshwater pulmonate snail. Neurobiology of Learning and Memory, 95(4), 393-403. https://doi.org/10.1016/j.nlm.2010.11.017

Dantas, E. P. F., & Sant’Anna, B. S. (2021). The edible apple snail (Pomacea dolioides (Reeve, 1856)): Meat yield and sensorial evaluation. International Food Research Journal, 28(5), 953-959. https://doi.org/10.47836/ifrj.28.5.08

Darwin, C. H., & Padmavathi, P. (2018). Preliminary assessment of calcium in six molluscan shells of Tamilnadu coast, India. Ecology, Environment and Conservation, 24, 302-305. https://doi.org/10.13140/RG.2.2.30050.79048

Dauphin, Y., Cuif, J. P., Castillo-Michel, H., Chevallard, C., Farre, B., & Meibom, A. (2014). Unusual micrometric calcite–aragonite interface in the abalone shell Haliotis (Mollusca, Gastropoda). Microscopy and Microanalysis, 20(1), 276-284. https://doi.org/10.1017/S1431927613013718

De Paula, S. M., & Silveira, M. (2009). Studies on molluscan shells: Contributions from microscopic and analytical methods. Micron, 40(7), 669-690. https://doi.org/10.1016/j.micron.2009.05.006

De Paula, S. M., Huila, M. F. G., Araki, K., & Toma, H. E. (2010). Confocal Raman and electronic microscopy studies on the topotactic conversion of calcium carbonate from Pomacea lineata shells into hydroxyapatite bioceramic materials in phosphate media. Micron, 41(8), 983-989. https://doi.org/10.1016/j.micron.2010.06.014

Ebanks, S. C., O’Donnell, M. J., & Grosell, M. (2010). Characterization of mechanisms for Ca2+ and HCO3-/CO32- acquisition for shell formation in embryos of the freshwater common pond snail Lymnaea stagnalis. Journal of Experimental Biology, 213(23), 4092-4098. https://doi.org/10.1242/jeb.045088

Estebenet, A. L., Martín, P. R., & Burela, S. (2006). Conchological variation in Pomacea canaliculata and other South American Ampullariidae (Caenogastropoda, Architaenioglossa). Biocell, 30(2), 329-335.

Fonseca, A. M., Hattori, G. Y., Costa, M. B., & Sant’Anna, B. S. (2017). Imposex in two apple snails of the Amazon. In B. S. Sant’Anna & G. Y. Hattori (Eds.), Amazonian Apple Snails (pp. 47-65). Nova Science Publishers.

Glass, N. H., & Darby, P. C. (2009). The effect of calcium and pH on Florida apple snail, Pomacea paludosa (Gastropoda: Ampullariidae), shell growth and crush weight. Aquatic Ecology, 43, 1085-1093. https://doi.org/10.1007/s10452-008-9226-3

Hüning, A. K., Lange, S. M., Ramesh, K., Jacob, D. E., Jackson, D. J., Panknin, U., Gutowska, M. A., Philipp, E. E. R., Rosenstiel, P., Lucassen, M., & Melzner, F. (2016). A shell regeneration assay to identify biomineralization candidate genes in mytilid mussels. Marine Genomics, 27, 57-67. https://doi.org/10.1016/j.margen.2016.03.011

Jesús-Navarrete, A., Sanchez, D. J. C. A., & Ortíz-Hernádez, C. (2023). Growth and shell hardness of the apple snail Pomacea flagellata Say, 1829, reared at three calcium concentrations. PeerJ, 11, e14840. https://doi.org/10.7717/peerj.14840

Kádár, E. (2008). Haemocyte response associated with induction of shell regeneration in the deep-sea vent mussel Bathymodiolus azoricus (Bivalvia: Mytilidae). Journal of Experimental Marine Biology and Ecology, 362(2), 71-78. https://doi.org/10.1016/j.jembe.2008.05.014

Kádár, E., Tschuschke, I. G., & Checa, A. (2008). Post-capture hyperbaric simulations to study the mechanism of shell regeneration of the deep-sea hydrothermal vent mussel Bathymodiolus azoricus (Bivalvia: Mytilidae). Journal of Experimental Marine Biology and Ecology, 364(2), 80-90. https://doi.org/10.1016/j.jembe.2008.07.028

Li, S., Liu, Y., Liu, C., Huang, J., Zheng, G., Xie, L., & Zhang, R. (2016). Hemocytes participate in calcium carbonate crystal formation, transportation and shell regeneration in the pearl oyster Pinctada fucata. Fish & Shellfish Immunology, 51, 263-270. https://doi.org/10.1016/j.fsi.2016.02.027

Liang, Y., Zhao, J., & Wu, C. (2010). The micro/nanostructure characteristics and the mechanical properties of Hemifusus tuba conch shell. Journal of Bionic Engineering, 7, 307-313. https://doi.org/10.1016/S1672-6529(10)60261-2

Limeira Jr., S. C. M., Rodrigues, S. C., & Ghilardi, R. P. (2023). Characterization of the cross-lamellar structure of Olivancillaria urceus (Gastropoda: Olividae) and its dissolution pattern. Micron, 166, 103416. https://doi.org/10.1016/j.micron.2023.103416

Liu, A. X., Jin, C., Li, H., Bai, Z., & Li, J. (2018). Morphological structure of shell and expression patterns of five matrix protein genes during the shell regeneration process in Hyriopsis cumingii. Aquaculture and Fisheries, 3(6), 225-231. https://doi.org/10.1016/j.aaf.2018.09.005

Liu, L. L., Zhao, S., Yang, J. E., Zhang, N. Q., Zhao, H., Wu, Z., He, T. M. Y., & Guo, J. (2017). Regeneration of excised shell by the invasive apple snail Pomacea canaliculata. Marine and Freshwater Behaviour and Physiology, 50(1), 17-29. https://doi.org/10.1080/10236244.2016.1261455

Liu, Y., Bai, Z., Li, Q., Zhao, Y., & Li, J. (2013). Healing and regeneration of the freshwater pearl mussel Hyriopsis cumingii Lea after donating mantle saibos. Aquaculture, 392-395, 34-43. https://doi.org/10.1016/j.aquaculture.2013.01.035

Madsen, H. (1987). Effect of calcium concentration on growth and egg laying of Helisoma duryi, Biomphalaria alexandrina, B. camerunensis and Bulinus truncatus (Gastropoda: Planorbidae). Journal of Applied Ecology, 24(3), 823-836. https://doi.org/10.2307/2403983

Magalhães, A. C. S., Pinheiro, J., & Mello-Silva, C. C. (2011). A mobilização do cálcio em Biomphalaria glabrata exposta a diferentes quantidades de carbonato de cálcio. Revista de Patologia Tropical, 40(1), 46-55. https://doi.org/10.5216/rpt.v40i1.13916

Marin, F., & Luquet, G. (2004). Molluscan shell proteins. Comptes Rendus Palevol, 3(6-7), 469-492. https://doi.org/10.1016/j.crpv.2004.07.009

Martin, P. R., Estebenet, A. L., & Cazzaniga, N. J. (2001). Factors affecting the distribution of Pomacea canaliculata (Gastropoda: Ampullariidae) along its southernmost natural limit. Malacologia, 43(1), 13-23.

Meldrum, F. C. (2003). Calcium carbonate in biomineralisation and biomimetic chemistry. International Materials Reviews, 48(3), 187-224. https://doi.org/10.1179/095066003225005836

Melo, I. B., Hattori, G. Y., & Sant’Anna, B. S. (2017). Reproduction and substrate selection for oviposition of the gastropod Pomacea dolioides (Reeve, 1856). In B. S. Sant’Anna & G. Y. Hattori (Eds.), Amazonian apple snails (pp. 89-107). Nova Science Publishers.

Morrison, A. E., & Cochrane, E. E. (2008). Investigating shellfish deposition and landscape history at the Natia Beach site, Fiji. Journal of Archaeological Science, 35(8), 2387-2399. https://doi.org/10.1016/j.jas.2008.03.013

Nduku, W. K., & Harrison, A. D. (1976). Calcium as a limiting factor in the biology of Biomphalaria pfeifferi (Krauss), (Gastropoda: Planorbidae). Hydrobiologia, 49, 43-170. https://doi.org/10.1007/BF00772685

Ohta, T., & Saeki, I. (2020). Comparisons of calcium sources between arboreal and ground-dwelling land snails: Implication from strontium isotope analyses. Journal of Zoology, 311(2), 137-144. https://doi.org/10.1111/jzo.12767

Paschoal, L. R. P., & Oliveira, L. J. F. (2017). Histology and histochemistry of the testes in two Amazonian pple snails. In B. S. Sant’Anna & G. Y. Hattori (Eds.), Amazonian apple snails (pp. 127-144). Nova Science Publishers.

Pierre, S. M., Quintana-Ascencio, P. F., Boughton, E. H., & Jenkins, D. G. (2017). Dispersal and local environment affect the spread of an invasive apple snail (Pomacea maculata) in Florida, USA. Biological Invasions, 19, 2647-2661. https://doi.org/10.1007/s10530-017-1474-5

Pires-Júnior, A. N., Hattori, G. Y., & Sant’Anna, B. S. (2019). Effect of stock density of cultured Amazon apple snail Pomacea dolioides (Gastropoda: Ampullariidae) in Brazil. Brazilian Journal of Animal Science, 48, 1-8. https://doi.org/10.1590/rbz4820180053

Posch, H., Garr, A. L., Pierce, R., & Davis, M. (2012). The effect of stocking density on the reproductive output of hatchery-reared Florida apple snails, Pomacea paludosa. Aquaculture, 360-361, 37-40. https://doi.org/10.1016/j.aquaculture.2012.07.007

Rodríguez, F. V. I., & Carranza, M. M. (2007). Validación del cultivo semi-intensivo de caracol Tote (Pomacea flagellata), en el trópico húmedo. AquaTIC, (27), 16-30.

Silva, D., & Debacher, N. A. (2010). Caracterização físicoquímica e microestrutural de conchas de moluscos bivalves provenientes de cultivos da região litorânea da ilha de Santa Catarina. Química Nova, 33(5), 1053-1058. https://doi.org/10.1590/S0100-40422010000500009

Soído, C., Vasconcellos, M. C., Diniz, A. G., & Pinheiro, J. (2009). An improvement of calcium determination technique in the shell of molluscs. Brazilian Archives of Biology and Technology, 52(1), 93-98. https://doi.org/10.1590/S1516-89132009000100012

Suzuki, M., & Nagasawa, H. (2013). Mollusk shell structures and their formation mechanism. Canadian Journal of Zoology, 91(6), 349-366. https://doi.org/10.1139/cjz-2012-0333

Thomas, J. D., Benjamin, M., Lough, A., & Aram, R. H. (1974). The effects of calcium in the external environment on the growth and natality rates of Biomphalaria glabrata (Say). Journal of Animal Ecology, 43(3), 839-860. https://doi.org/10.2307/3539

Trinkler, N., Jean-François, B., Frédéric, M., Maylis, L., Jolivet, A., Philippe, C., & Christine, P. (2011). Mineral phase in shell repair of Manila clam Venerupis philippinarum affected by brown ring disease. Diseases of Aquatic Organisms, 93, 149-162. https://doi.org/10.3354/dao02288

Trinkler, N., Sinquin, G., Querne, J., & Paillard, C. (2010). Resistance to brown ring disease in the Manila clam, Ruditapes philippinarum: A study of selected stocks showing a recovery process by shell repair. Journal of Invertebrate Pathology, 104(1), 8-16. https://doi.org/10.1016/j.jip.2009.12.007

Tunholi, V. M., Lustrino, D., Tunholi-Alves, V. M., Garcia, J. S., Mello-Silva, C. C. C., Maldonado, J. R. A., & Rodrigues, M. (2011). Influence of Echinostoma paraensei (Lie and Basch, 1967) infection on the calcium content in Biomphalaria glabrata (Say, 1818). Experimental Parasitology, 129(3), 266-269. https://doi.org/10.1016/j.exppara.2011.07.016

Watson, A. M., & Ormerod, S. J. (2004). The distribution of three uncommon freshwater gastropods in the drainage ditches of British grazing marshes. Biological Conservation, 118(4), 455-466. https://doi.org/10.1016/j.biocon.2003.09.021

Yang, S., Ni, L., Zhao, L., Yang, J., Liu, Q., Zhang, J., He, Z., & Peng, S. (2016). Repair process and enzymatic activity associated with induction of shell regeneration in the invasive species. Molluscan Research, 36(3), 207-212. https://doi.org/10.1080/13235818.2015.1128603

Downloads

Publicado

2025-05-30

Edição

Seção

Artigo cientí­fico