Cultivo do gastrópode Pomacea dolioides (Reeve, 1856): efeitos do cálcio no crescimento, sobrevivência e regeneração da concha
DOI:
https://doi.org/10.20950/1678-2305/bip.2024.51.e933Palavras-chave:
Pomacea, Crescimento, Regeneração, AquiculturaResumo
Gastrópodes do gênero Pomacea são explorados para alimentação em diferentes partes do mundo. Pomacea dolioides recentemente tem recebido atenção sobre sua densidade de estoque e características da carne, permanecendo uma lacuna sobre os efeitos do cálcio no seu cultivo. O presente estudo avaliou a influência do cálcio dissolvido na água no cultivo do gastrópode P. dolioides considerando crescimento, peso, sobrevivência, ultraestrutura e tempo de regeneração na concha. Juvenis foram distribuídos em seis tratamentos com diferentes concentrações de Ca2+. O cálcio dissolvido na água foi essencial. Gastrópodes não sobreviveram mais de 40 dias sem cálcio. Também, apresentaram maior crescimento e engorda com 60 mg*L-1 de CaSO4 ou mais, em adição a uma concha mais grossa com duas camadas de cristais. O carbonato de cálcio contido na concha foi significantemente maior no tratamento com 80 mg*L-1 de CaSO4. O tempo de regeneração não diferiu entre os tratamentos. Com base nestes resultados, pôde-se concluir que o cálcio dissolvido na água influencia no cultivo do gastrópode P. dolioides em relação a comprimento, peso inorgânico e orgânico e cálcio do gastrópode, e 80 mg*L-1 de CaSO4 é a concentração ideal para cultivar essa espécie.
Referências
Baird, R., Rice, E., & Eaton, A. (2017). Standard methods for the examination of water and wastewaters. In C. E. W. Rice, A. D. Eaton, & American Water Works Association (Eds.), Water Environment Federation, American Public Health Association (pp. 71-90).
Brodersen, J., & Madsen, H. (2003). The effect of calcium concentration on the crushing resistance, weight and size of Biomphalaria sudanica (Gastropoda: Planorbidae). Hydrobiologia, 490, 181-186. https://doi.org/10.1023/A:1023495326473
Bukowski, S. J., & Auld, J. R. (2014). The effects of calcium in mediating the inducible morphological defenses of a freshwater snail, Physa acuta. Aquatic Ecology, 48(1), 85-90. https://doi.org/10.1007/s10452-013-9468-6
Cadée, G. C. (2011). Hydrobia as ‘Jonah in the whale’: Shell repair after passing through the digestive tract of shelducks alive. Palaios, 26(4), 245-249. https://doi.org/10.2110/palo.2010.p10-095r
Dalesman, S., Braun, M. H., & Lukowiak, K. (2011). Low environmental calcium blocks long-term memory formation in a freshwater pulmonate snail. Neurobiology of Learning and Memory, 95(4), 393-403. https://doi.org/10.1016/j.nlm.2010.11.017
Dantas, E. P. F., & Sant’Anna, B. S. (2021). The edible apple snail (Pomacea dolioides (Reeve, 1856)): Meat yield and sensorial evaluation. International Food Research Journal, 28(5), 953-959. https://doi.org/10.47836/ifrj.28.5.08
Darwin, C. H., & Padmavathi, P. (2018). Preliminary assessment of calcium in six molluscan shells of Tamilnadu coast, India. Ecology, Environment and Conservation, 24, 302-305. https://doi.org/10.13140/RG.2.2.30050.79048
Dauphin, Y., Cuif, J. P., Castillo-Michel, H., Chevallard, C., Farre, B., & Meibom, A. (2014). Unusual micrometric calcite–aragonite interface in the abalone shell Haliotis (Mollusca, Gastropoda). Microscopy and Microanalysis, 20(1), 276-284. https://doi.org/10.1017/S1431927613013718
De Paula, S. M., & Silveira, M. (2009). Studies on molluscan shells: Contributions from microscopic and analytical methods. Micron, 40(7), 669-690. https://doi.org/10.1016/j.micron.2009.05.006
De Paula, S. M., Huila, M. F. G., Araki, K., & Toma, H. E. (2010). Confocal Raman and electronic microscopy studies on the topotactic conversion of calcium carbonate from Pomacea lineata shells into hydroxyapatite bioceramic materials in phosphate media. Micron, 41(8), 983-989. https://doi.org/10.1016/j.micron.2010.06.014
Ebanks, S. C., O’Donnell, M. J., & Grosell, M. (2010). Characterization of mechanisms for Ca2+ and HCO3-/CO32- acquisition for shell formation in embryos of the freshwater common pond snail Lymnaea stagnalis. Journal of Experimental Biology, 213(23), 4092-4098. https://doi.org/10.1242/jeb.045088
Estebenet, A. L., Martín, P. R., & Burela, S. (2006). Conchological variation in Pomacea canaliculata and other South American Ampullariidae (Caenogastropoda, Architaenioglossa). Biocell, 30(2), 329-335.
Fonseca, A. M., Hattori, G. Y., Costa, M. B., & Sant’Anna, B. S. (2017). Imposex in two apple snails of the Amazon. In B. S. Sant’Anna & G. Y. Hattori (Eds.), Amazonian Apple Snails (pp. 47-65). Nova Science Publishers.
Glass, N. H., & Darby, P. C. (2009). The effect of calcium and pH on Florida apple snail, Pomacea paludosa (Gastropoda: Ampullariidae), shell growth and crush weight. Aquatic Ecology, 43, 1085-1093. https://doi.org/10.1007/s10452-008-9226-3
Hüning, A. K., Lange, S. M., Ramesh, K., Jacob, D. E., Jackson, D. J., Panknin, U., Gutowska, M. A., Philipp, E. E. R., Rosenstiel, P., Lucassen, M., & Melzner, F. (2016). A shell regeneration assay to identify biomineralization candidate genes in mytilid mussels. Marine Genomics, 27, 57-67. https://doi.org/10.1016/j.margen.2016.03.011
Jesús-Navarrete, A., Sanchez, D. J. C. A., & Ortíz-Hernádez, C. (2023). Growth and shell hardness of the apple snail Pomacea flagellata Say, 1829, reared at three calcium concentrations. PeerJ, 11, e14840. https://doi.org/10.7717/peerj.14840
Kádár, E. (2008). Haemocyte response associated with induction of shell regeneration in the deep-sea vent mussel Bathymodiolus azoricus (Bivalvia: Mytilidae). Journal of Experimental Marine Biology and Ecology, 362(2), 71-78. https://doi.org/10.1016/j.jembe.2008.05.014
Kádár, E., Tschuschke, I. G., & Checa, A. (2008). Post-capture hyperbaric simulations to study the mechanism of shell regeneration of the deep-sea hydrothermal vent mussel Bathymodiolus azoricus (Bivalvia: Mytilidae). Journal of Experimental Marine Biology and Ecology, 364(2), 80-90. https://doi.org/10.1016/j.jembe.2008.07.028
Li, S., Liu, Y., Liu, C., Huang, J., Zheng, G., Xie, L., & Zhang, R. (2016). Hemocytes participate in calcium carbonate crystal formation, transportation and shell regeneration in the pearl oyster Pinctada fucata. Fish & Shellfish Immunology, 51, 263-270. https://doi.org/10.1016/j.fsi.2016.02.027
Liang, Y., Zhao, J., & Wu, C. (2010). The micro/nanostructure characteristics and the mechanical properties of Hemifusus tuba conch shell. Journal of Bionic Engineering, 7, 307-313. https://doi.org/10.1016/S1672-6529(10)60261-2
Limeira Jr., S. C. M., Rodrigues, S. C., & Ghilardi, R. P. (2023). Characterization of the cross-lamellar structure of Olivancillaria urceus (Gastropoda: Olividae) and its dissolution pattern. Micron, 166, 103416. https://doi.org/10.1016/j.micron.2023.103416
Liu, A. X., Jin, C., Li, H., Bai, Z., & Li, J. (2018). Morphological structure of shell and expression patterns of five matrix protein genes during the shell regeneration process in Hyriopsis cumingii. Aquaculture and Fisheries, 3(6), 225-231. https://doi.org/10.1016/j.aaf.2018.09.005
Liu, L. L., Zhao, S., Yang, J. E., Zhang, N. Q., Zhao, H., Wu, Z., He, T. M. Y., & Guo, J. (2017). Regeneration of excised shell by the invasive apple snail Pomacea canaliculata. Marine and Freshwater Behaviour and Physiology, 50(1), 17-29. https://doi.org/10.1080/10236244.2016.1261455
Liu, Y., Bai, Z., Li, Q., Zhao, Y., & Li, J. (2013). Healing and regeneration of the freshwater pearl mussel Hyriopsis cumingii Lea after donating mantle saibos. Aquaculture, 392-395, 34-43. https://doi.org/10.1016/j.aquaculture.2013.01.035
Madsen, H. (1987). Effect of calcium concentration on growth and egg laying of Helisoma duryi, Biomphalaria alexandrina, B. camerunensis and Bulinus truncatus (Gastropoda: Planorbidae). Journal of Applied Ecology, 24(3), 823-836. https://doi.org/10.2307/2403983
Magalhães, A. C. S., Pinheiro, J., & Mello-Silva, C. C. (2011). A mobilização do cálcio em Biomphalaria glabrata exposta a diferentes quantidades de carbonato de cálcio. Revista de Patologia Tropical, 40(1), 46-55. https://doi.org/10.5216/rpt.v40i1.13916
Marin, F., & Luquet, G. (2004). Molluscan shell proteins. Comptes Rendus Palevol, 3(6-7), 469-492. https://doi.org/10.1016/j.crpv.2004.07.009
Martin, P. R., Estebenet, A. L., & Cazzaniga, N. J. (2001). Factors affecting the distribution of Pomacea canaliculata (Gastropoda: Ampullariidae) along its southernmost natural limit. Malacologia, 43(1), 13-23.
Meldrum, F. C. (2003). Calcium carbonate in biomineralisation and biomimetic chemistry. International Materials Reviews, 48(3), 187-224. https://doi.org/10.1179/095066003225005836
Melo, I. B., Hattori, G. Y., & Sant’Anna, B. S. (2017). Reproduction and substrate selection for oviposition of the gastropod Pomacea dolioides (Reeve, 1856). In B. S. Sant’Anna & G. Y. Hattori (Eds.), Amazonian apple snails (pp. 89-107). Nova Science Publishers.
Morrison, A. E., & Cochrane, E. E. (2008). Investigating shellfish deposition and landscape history at the Natia Beach site, Fiji. Journal of Archaeological Science, 35(8), 2387-2399. https://doi.org/10.1016/j.jas.2008.03.013
Nduku, W. K., & Harrison, A. D. (1976). Calcium as a limiting factor in the biology of Biomphalaria pfeifferi (Krauss), (Gastropoda: Planorbidae). Hydrobiologia, 49, 43-170. https://doi.org/10.1007/BF00772685
Ohta, T., & Saeki, I. (2020). Comparisons of calcium sources between arboreal and ground-dwelling land snails: Implication from strontium isotope analyses. Journal of Zoology, 311(2), 137-144. https://doi.org/10.1111/jzo.12767
Paschoal, L. R. P., & Oliveira, L. J. F. (2017). Histology and histochemistry of the testes in two Amazonian pple snails. In B. S. Sant’Anna & G. Y. Hattori (Eds.), Amazonian apple snails (pp. 127-144). Nova Science Publishers.
Pierre, S. M., Quintana-Ascencio, P. F., Boughton, E. H., & Jenkins, D. G. (2017). Dispersal and local environment affect the spread of an invasive apple snail (Pomacea maculata) in Florida, USA. Biological Invasions, 19, 2647-2661. https://doi.org/10.1007/s10530-017-1474-5
Pires-Júnior, A. N., Hattori, G. Y., & Sant’Anna, B. S. (2019). Effect of stock density of cultured Amazon apple snail Pomacea dolioides (Gastropoda: Ampullariidae) in Brazil. Brazilian Journal of Animal Science, 48, 1-8. https://doi.org/10.1590/rbz4820180053
Posch, H., Garr, A. L., Pierce, R., & Davis, M. (2012). The effect of stocking density on the reproductive output of hatchery-reared Florida apple snails, Pomacea paludosa. Aquaculture, 360-361, 37-40. https://doi.org/10.1016/j.aquaculture.2012.07.007
Rodríguez, F. V. I., & Carranza, M. M. (2007). Validación del cultivo semi-intensivo de caracol Tote (Pomacea flagellata), en el trópico húmedo. AquaTIC, (27), 16-30.
Silva, D., & Debacher, N. A. (2010). Caracterização físicoquímica e microestrutural de conchas de moluscos bivalves provenientes de cultivos da região litorânea da ilha de Santa Catarina. Química Nova, 33(5), 1053-1058. https://doi.org/10.1590/S0100-40422010000500009
Soído, C., Vasconcellos, M. C., Diniz, A. G., & Pinheiro, J. (2009). An improvement of calcium determination technique in the shell of molluscs. Brazilian Archives of Biology and Technology, 52(1), 93-98. https://doi.org/10.1590/S1516-89132009000100012
Suzuki, M., & Nagasawa, H. (2013). Mollusk shell structures and their formation mechanism. Canadian Journal of Zoology, 91(6), 349-366. https://doi.org/10.1139/cjz-2012-0333
Thomas, J. D., Benjamin, M., Lough, A., & Aram, R. H. (1974). The effects of calcium in the external environment on the growth and natality rates of Biomphalaria glabrata (Say). Journal of Animal Ecology, 43(3), 839-860. https://doi.org/10.2307/3539
Trinkler, N., Jean-François, B., Frédéric, M., Maylis, L., Jolivet, A., Philippe, C., & Christine, P. (2011). Mineral phase in shell repair of Manila clam Venerupis philippinarum affected by brown ring disease. Diseases of Aquatic Organisms, 93, 149-162. https://doi.org/10.3354/dao02288
Trinkler, N., Sinquin, G., Querne, J., & Paillard, C. (2010). Resistance to brown ring disease in the Manila clam, Ruditapes philippinarum: A study of selected stocks showing a recovery process by shell repair. Journal of Invertebrate Pathology, 104(1), 8-16. https://doi.org/10.1016/j.jip.2009.12.007
Tunholi, V. M., Lustrino, D., Tunholi-Alves, V. M., Garcia, J. S., Mello-Silva, C. C. C., Maldonado, J. R. A., & Rodrigues, M. (2011). Influence of Echinostoma paraensei (Lie and Basch, 1967) infection on the calcium content in Biomphalaria glabrata (Say, 1818). Experimental Parasitology, 129(3), 266-269. https://doi.org/10.1016/j.exppara.2011.07.016
Watson, A. M., & Ormerod, S. J. (2004). The distribution of three uncommon freshwater gastropods in the drainage ditches of British grazing marshes. Biological Conservation, 118(4), 455-466. https://doi.org/10.1016/j.biocon.2003.09.021
Yang, S., Ni, L., Zhao, L., Yang, J., Liu, Q., Zhang, J., He, Z., & Peng, S. (2016). Repair process and enzymatic activity associated with induction of shell regeneration in the invasive species. Molluscan Research, 36(3), 207-212. https://doi.org/10.1080/13235818.2015.1128603
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Rafaela Fernanda Batista Ferreira, Fernando José Zara, Bruno Sampaio Sant'Anna

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.