Lettuce (Lactuca sativa) production with effluent from a tilapia culture maintained in BFT and low salinity

Authors

  • Guilherme Luis LENZ Universidade Federal de Santa Catarina (UFSC), Departamento de Aquicultura, Laboratório de Camarí­µes Marinhos -  Setor Tratamento de Efluentes, Curso de Graduação em Engenharia de Aquicultura
  • Emerson Giuliani DURIGON Universidade do Estado de Santa Catarina (UDESC), Laboratório de Aquicultura (LAQ), Laguna-SC, Brasil. Mestrando do Programa de Pós-Graduação em Zootecnia (PPGZOO/UDESC) http://orcid.org/0000-0001-5760-3070
  • Katt Regina LAPA Universidade Federal de Santa Catarina (UFSC), Departamento de Aquicultura, Laboratório de Camarí­µes Marinhos -  Setor Tratamento de Efluentes, Curso de Graduação em Engenharia de Aquicultura http://orcid.org/0000-0002-0130-5389
  • Maurício Gustavo Coelho EMERENCIANO Universidade do Estado de Santa Catarina (UDESC), Departamento de Engenharia de Pesca, Laboratório de Aquicultura (LAQ)

DOI:

https://doi.org/10.20950/1678-2305.2017v43n4p614

Keywords:

sustainable aquaculture, integration of cultures, brackish water, aquaponics, recirculating aquaculture systems (RAS)

Abstract

This experiment evaluated the effect of salinity on growth performance of different lettuce cultivars (Lactuca sativa) in an aquaponics system with biofloc technology. The device contained two independent systems with two different salinities: 0 ppt and 3 ppt. Juvenile tilapia (Oreochromis niloticus) 6.1 kg m-3 and three varieties of lettuce: red leaf and smooth and crisp 20 plants m-2 were stored in the floating system. All fish performance parameters showed no statistical differences, except for the hepatosomatic index, higher in 3 ppt (4.35%) versus (3.07%) in 0 ppt (P<0.05). In general, the productivity of lettuce cultivars was superior in fresh water (1.21 kg m-2) compared to brackish water (0.8 kg m-2) (P<0.05). In most phyto-technical parameters evaluated, the purple variety had better performance than the smooth and crisped varieties. In relation to plant quality index (IQP), purple variety in brackish water had the best score, presenting leafs with higher integrity and intense coloration. The results demonstrated that it is possible to integrate the production of red leaf variety in aquaponics systems with the technology of bioflocs in low salinity.

References

ADLER, P.R.; TAKEDA, F.; GLENN, E.M.; SUMMERFELT, S.T. 1996 Utilizing byproducts to enhance aquaculture sustainability. World Aquaculture, 27(2): 24-26.

ALT, D. 1980 Changes in the composition of the nutrient solution during plant growthâ€" an important factor in soilless culture. Fifth International Congress on Soilless Culture. Proceedings of a Conference, Wageningen, The Netherland, p. 97í 109.

AL-HAFEDH, Y.S.; ALAM, A.; BELTAGI, M.S. 2008 Food production and water conservation in a
recirculating aquaponic system in Saudi Arabia at different ratios of fish feed to plants. Journal of
the world aquaculture society, 39(4): 510-520.

AVNIMELECH, Y.; ZOHAR, G. 1986 The effect of local anaerobic conditions on growth retardation
in aquaculture systems. Aquaculture, 58(3-4):167-174.

AVNIMELECH, Y. 2012 Biofloc Technology -A Practical Guide Book. 2ª ed. The World Aquaculture
Society, Baton Rouge, Louisiana, United States. Disponí­­vel em: <https://cals.arizona.edu/
azaqua/ista/ISTA9/PDF's/Yoram-BFT%20 Brief%20Summary%205.3.11.pdf>. Acesso em: 18 nov. 2016.

AYERS, R.S.; WESTCOT, D.W. 1999 A qualidade da água na agricultura. Campina Grande: Universidade Federal da Paraí­­ba, 153p.

AZIM, M.E.; LITTLE, D.C. 2008 The biofloc technology (BFT) in indoor tanks: Water quality,
biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture,
283(1): 29í 35.

BARBIERI, E.; MARQUEZ, H.L.A.; CAMPOLIM, M.B.; SALVARANI, P.I. 2014 Avaliação dos Impactos ambientais e socioeconômicos da aquicultura na região estuarina-lagunar de Cananéia, São Paulo, Brasil. Revista da Gestão Costeira Integrada, 14(3): 385-398.

BOYD, C.E. 2003 Guidelines for aquaculture effluent management at the farm-level. Aquaculture,
226(1): 101-112.

BOYD, C.E.; TUCKER, C.S. 1992 Water quality in ponds for aquaculture. Alabama Agricultural Experiment Station, Auburn University, 188 p.

COLLAí­"¡O, F.L.; SANTOR, S.M.; BARBIERI, E. 2015 Cultivo de Bijupirá (Rachycentron canadum) em
Cananeia, SP, Brasil. Avaliação da viabilidade utilizando geoprocessamento. Revista da Gestão
Costeira Integrada, 15(2): 277-289.

DECAMP, O.; CODY, J.; CONQUEST, L.; DELANOY, G.; TACON, A. G. 2003 Effect of salinity on
natural community and production of Litopenaeus vannamei (Boone), within experimental zero-water exchange culture systems. Aquaculture Research, 34(4): 345-355.

DEDIU, L.; CRISTEA, V.; XIAOSHUAN, Z. 2012 Waste production and valorization in an integrated aquaponic system with bester and lettuce. African Journal of Biotechnology, 11(9): 2349-2358.

DIVER, S. Aquaponics - Integration of Hydroponics with Aquaculture. 2006 ATTRA National Sustainable Agriculture Information Service. National Center for Appropriate Technology, 28p. Disponí­­vel em: <https://attra.ncat.org/attra-pub/download. php?id=56>. Acesso em: 18 nov. 2016.
DOUGLAS, J.S. 1985 Advanced guide to hydroponics. Pelham Books. 368p.

EBELING, J.M.; TIMMONS, M.B.; BISOGNI, J.J.2006 Engineering analysis of the stoichiometry of
photoautotrophic, autotrophic, and heterotrophic removal of ammoniaí nitrogen in aquaculture
systems. Aquaculture, 257(1): 346-358.

EDING, E.H.; KAMSTRA, A.; VERRETH, J.A.J.;HUISMAN, E. A.; KLAPWIJK, A. 2006 Design and operation of nitrifying trickling filters in recirculating aquaculture: a review. Aquacultural Engineering, 34(3): 234-260.

EMERENCIANO, M.G.C.; GAXIOLA, G.; CUZON, G. 2013 Biofloc Technology (BFT): A Review
for Aquaculture Application and Animal Food Industry. In: Biomass Now - Cultivation and
Utilization, InTech. p. 301-328. Disponí­­vel em: <http://cdn.intechopen.com/pdfs/44409/
intech-biofloc_technology_bft_a_review_for_aquaculture_application_and_animal_food_
industry.pdf>. Acesso em: 18 dez. 2016.

GRABER, A.; JUNGE, R. 2009 Aquaponic Systems: Nutrient recycling from fish wastewater by
vegetable production. Desalination, 246(1): 147-156.

Gí­Å“NER, Y.; í­–ZDEN, O.; í­"¡AÄžIRGAN, H.; ALTUNOK, M.; KIZAK, V. 2006 Effects of salinity on the osmoregulatory functions of the gills in Nile tilapia (Oreochromis niloticus). Turkish Journal
of Veterinary and Animal Sciences. 29(6): 1259-1266.

HAMLIN, H.J. 2006 Nitrate toxicity in Siberian sturgeon (Acipenser baeri). Aquaculture, 253(1):
688í 693.

HARGREAVES, J.A. 2006 Photosynthetic suspendedgrowth systems in aquaculture. Aquacultural
Engineering, 34(3): 344-363.

HARGREAVES, J.A. 2013 Biofloc production systems for aquaculture. Southern Regional Aquaculture Center, 11p. Disponí­­vel em: <http://2kjj1d3odhc3296co7jhe511.wpengine. netdna-cdn.com/files/2013/09/SRACPublication-No.-4503-Biofloc-ProductionSystems-for-quaculture.pdf>. Acesso em: 14 dez. 2016.

HU, Z.; LEE, J.W.; CHANDRAN, K.; KIM, S.; BROTTO, A.C.; KHANAL, S.K. 2015 Effect of plant species on nitrogen recovery in aquaponics. Bioresource Technology, 188(1): 92-98.

HUTCHINSON, W.; JEFFREY, M.; O’SULLIVAN, D.; CASAMENT, D.; CLARKE, S. 2004 Recirculating
Aquaculture Systems: Minimum Standards for Design, Construction and Management. Inland
Aquaculture Association of South Australia Inc. 66p. Disponí­­vel em: <www.epa.sa.gov.au/
files/477398_inland_aquaculture.pdf>. Acesso em 12 nov. 2016.

IBGE. Instituto Brasileiro de Geografia e Estatí­­stica. Produção da Pecuária Municipal. Brasil. 2015, vol nº 43. Disponí­­vel em: http://biblioteca.ibge.gov. br/visualizacao/periodicos/84/ppm_2015_v43_
br.pdf Acesso em: 05 mar. 2017.

JAAP, V.R. 1995 The potential for integrated biological treatment systems in recirculating fish
culture - A review. Aquaculture, 139(3-4): 181-201.

LENNARD, W. 2012 Aquaponic System Design Parameters: Fish to Plant Ratios (Feeding Rate
Ratios). Aquaponics solution. Disponí­­vel em: <https://www.aquaponic.com.au/Fish%20
to%20plant%20ratios.pdf>. Acesso em: 18 dez. 2016.

MOYA. E.A.E.; SAHAGí­Å¡N, C.A.A.; CARILLO, J.M.M.; ALPUCHE, P.J.A.; ÁLVAREZGONZÁLEZ, C.A.; MARTÍNEZ-YÁí­"˜EZ, R. 2014 Herbaceous plants as part of biological filter for aquaponics system. Aquaculture Research, 47(6):1716-1726.

NATORI, M. M.; SUSSEL, F. R.; SANTOS, E. D.; PREVIERO, T. D. C.; VIEGAS, E. M. M.; GAMEIRO, A. H. 2011 Desenvolvimento da carcinicultura marinha no Brasil e no mundo: avanços tecnológicos e desafios. Informações Econômicas, 41(2): 61-73.

PANTANELLA, E. 2008 Pond aquaponics: new pathways to sustainable integrated aquaculture
and agriculture. Aquaculture News. [online] URL: <http://www-aqua.stir.ac.uk/public/
aquanews/downloads/issue_34/34p10_11.pdf>. Acesso em 13 out. 2016.

PAULUS, D.; DOURADO NETO, D.; FRIZZONE, J.A.; SOARES, T.M. 2010 Produção e indicadores
fisiológicos de alface sob hidroponia com água salina. Horticultura Brasileira, 28(1): 29-35.

PINHO, S.M.; MOLINARI, D.; MELLO, G. L.; FITZSIMMONS, K. M.; EMERENCIANO, M. G. C. 2017 Effluent from a biofloc technology (BFT) tilapia culture on the aquaponics production of different lettuce varieties. Ecological Engineering, 103(1): 146-153.

RAKOCY, J. E. 2002 An integrated fish and field crop system for arid areas. In: Ecological aquaculture: the evolution of the blue revolution, p. 263-285.

RAKOCY, J.E.; HARGREAVES, J.A.; BAILEY, D.S. 1993 Nutrient accumulation in a recirculation
aquaculture system integrated with vegetable hydroponics. In: Wang, J.K. (Ed.), Techniques for
Modern Aquaculture, p. 148í 158.

RAKOCY, J.E.; MASSER, M.P.; LOSORDO, T.M. 2006 Recirculating Aquaculture Tank Production
Systems: Aquaponics-Integrating Fish and Plant Culture. SRAC Publication. Disponí­­vel em: <
http://www2.ca.uky.edu/wkrec/454fs.pdf>. Acesso em 11 dez 2016.

RAKOCY, J. E. 2007 Ten guidelines for aquaponic systems. Aquaponics Journal, 1: 14-17. Disponí­­vel
em: http://santarosa.ifas.ufl.edu/wp-content/uploads/2013/06/Aquaponics-Journal-10-Guidelines.pdf. Acesso em: 11 dez. 2016.

RAKOCY, J.E.; BAILEY D.S.; SHULTZ, R.C.; DANAHER, J.J. A 2011 Commercial-Scale Aquaponic System Developed at the University of the Virgin Islands. Agricultural Experiment Station University of the Virgin Islands. Proceedings of the 9th International Symposium on Tilapia in Aquaculture, p. 336í 443.

RESH, H.M. 2012 Hydroponic food production: a definitive guidebook for the advanced home gardener and the commercial hydroponic grower. 7th ed. CRC Press, 513p.

RODRIGUES, L.R.F. 2002 Cultivo pela técnica de hidroponia: técnicas de cultivo hidropônico e de
controle ambiental no manejo de pragas, doenças e nutrição vegetal em ambiente protegido. Jaboticabal: FUNEP. 726p.

ROOSTA, H.R.; HAMIDPOUR, M. 2011 Effects of foliar application of some macro-and icronutrients on tomato plants in aquaponic and hydroponic systems. Scientia Horticulturae, 129(3):396-402.

SCHNEIDER, O.; SERETI, V.; EDING, E.H.; VERRETH, J. A. J. 2005 Analysis of nutrient flows
in integrated intensive aquaculture systems. Aquacultural Engineering, 32(3): 379-401.

SOARES, T.M. 2007 Utilização de águas salobras no cultivo da alface em sistema hidropônico NFT como alternativa agrí­­cola condizente ao semi-árido brasileiro, Piracicaba, Brasil. 267f. (Tese de Doutorado. Escola Superior de Agricultura Luiz de Queiroz). Disponí­­vel em: <http://www.teses.usp.br/teses/disponiveis/11/11143/tde-29112007-093534/en.php>. Acesso em: 08 Dez. 2016.

TIMMONS, M.B; EBELING, J.M. 2010 Recirculating aquaculture. 3rd ed. NRAC Publication Cayuga
Aqua Ventures, Ithaca, NY, 975p.

TYSON, R.V.; SIMONNE, E.H.; WHITE, J.M.; LAMB, E.M. 2004 Reconciling water quality parameters
impacting nitrification in aquaponics: the pH levels. Proceedings of the Florida State Horticultural
Society, 117(1): 79-83.

Published

2017-12-15

Most read articles by the same author(s)