Different densities in whiteleg shrimp culture using bioflocs and well water in subtropical climate

Authors

  • Carolina COSTA Universidade Federal do Rio Grande -  UFRG, Instituto de Oceanografia, Estação Marinha de Aquacultura
  • Geraldo FÓES Universidade Federal do Rio Grande -  UFRG, Instituto de Oceanografia, Estação Marinha de Aquacultura http://orcid.org/0000-0003-2301-8169
  • Wilson WASIELESKY Universidade Federal do Rio Grande -  UFRG, Instituto de Oceanografia, Estação Marinha de Aquacultura http://orcid.org/0000-0002-7267-4755
  • Luis POERSCH Universidade Federal do Rio Grande -  UFRG, Instituto de Oceanografia, Estação Marinha de Aquacultura http://orcid.org/0000-0002-1663-6252

DOI:

https://doi.org/10.20950/1678-2305.2018.44.4.324

Keywords:

Litopenaeus vannamei, intensification, temperature

Abstract

In the last years, there is a strong tendency to produce marine shrimp in biofloc technology. This system promotes the increase of stocking densities using smaller areas. In addition, the use of well water can also be an alternative for farms off the coast. In subtropical areas, the temperature is a very important parameter to be considered, because it can reduce the culture period in ponds. This study aimed to evaluate the feasibility of production of Litopenaeus vannamei, comparing two stocking densities (100 and 150 shrimp m-2), use biofloc technology and well water. The experiment was carried out from January to April 2011 (105 days) at the Marine Station of Aquaculture (EMA/FURG), located at Rio Grande city (RS), Southern Brazil.  Three replicates ponds (600 m2 area each one) were used for both stocking density (post larvae 0.08 ± 0.03 g - PL 40).  The water quality parameters and ionic composition of well water were within acceptable range for the L. vannamei.  In the shrimp performance, the low FCR in both treatments can be attributed to the consumption of microbial flocs by the shrimp.  The stocking densities showed statistical differences in productivity: 9,748 and 13,860 kg ha- 1 for the treatments 100 and 150 shrimp m-2, respectively. Although the water temperature decreased in the last two weeks (19.4 °C), the survival was 97 % (100 shrimp m-2) and 88 % (150 shrimp m-2). In southern Brazil, the stocking densities 100 and 150 shrimp m-2 were suitable showing efficient values of growth, survival and feed conversion of shrimps. However, the density of 150 shrimp m-2 was more profitable due to its higher productivity. In this study, ionic ratio was lower than the values of seawater, but it did not affect the shrimp performance. With respect to location, it should be taken into account that climatic conditions in this area allow shrimp culture in ponds during the warmest months.

References

AALIMAHMOUDI, M.; AZARM, H.; MOHAMADI, Y. 2017 Biofloc new technology and shrimp disease in super-intensive aquaculture. International Journal of Fisheries and Aquatic Research, 2(2): 17-21.

ARANEDA, M.; PEREZ, E.P.; GASCA-LEYVA, E. 2008 White shrimp Penaeus vannamei culture in freshwater at three densities: condition state based on lenght and weight. Aquaculture, 283(1-4): 13-18.

APHA (American Public Health Association). 1998 Standard methods for the examination of water and wastewater. 20st edition. Washington, DC. 1193p.

AVNIMELECH, Y. 1999 Carbon: nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176(3): 227-235.

BARBIERI, E.; BONDIOLI, A.C.V.; MELO, C.A.; HENRIQUES, M.B. 2016 Nitrite toxicity to Litopenaeus schmitti (Burkenroad, 1936, Crustacea) at different salinity levels. Aquaculture Research, 47(4):1260-1268.

BOYD, C. E.; CLAY, J.W. 2002 Evaluation of Belize Aquaculture, Ltd: A Superintensive Shrimp Aquaculture System. Report prepared under the World Bank, NACA, WWF and FAO Consortium Program on Shrimp Farming and the Environment. Work in Progress for Public Discussion. Published by the Consortium. 17 p.

BROWDY, C.; VAN WYK, P.; STOCK, C.; ZEIGLER, R.; LEE, R. 2017 Building a better shrimp nursery, part 1. Benefits and design considerations for these important production tools. Global Aquaculture Alliance. April 24. Disponí­­vel em: https://www.2lua.vn/article/building-a-better-shrimp-nursery-part-1-59001fc8e49519363b8b456e.html?hl=en
BURFORD, M.A.; THOMPSON, P.J.; BAUMAN, R.H.; PEARSON, D.C. 2004 The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensive, zero-exchange system. Aquaculture, 232(1-4): 525-537.

DAVIS, D.A.; SAMOCHA, T.; BOYD, C.E. 2004 Acclimating Pacific white shrimp Litopenaeus vannamei to inland, low-salinity waters. Southern Regional Aquaculture Center, 2601.

ESPARZA-LEAL, H.M.; XAVIER, J.A.; WASIELESKY, W.J. 2016 Performance of Litopenaeus vannamei postlarvae reared in indoor nursery tanks under biofloc conditions at different salinities and zero-water exchange. Aquaculture International, 24(5): 1435-1447.

FÓES, G.K.; FRÓES, C.; KRUMMENAUER, D.; POERSCH, L.; WASIELESKY, W. 2011 Nursery of pink shrimp Farfantepenaeus paulensis in biofloc technology culture system: survival and growth at different stocking densities. Journal of Shellfish Research, 30(2): 1í 7.

FÓES, G.K.; KRUMMENAUER, D.; LARA, G.; POERSCH, L.; WASIELESKY, W. 2016 Long term storage and the compensatory growth of white shrimp Litopenaeus vannamei in aquaculture ponds. Latin American Journal of Aquatic Research, 44(3): 588-594.

FREITAS, R.R.; HARTMANN, C.; TAGLIANI, P.R.A; POERSCH, L. 2011 Evaluation of space adequateness of shrimp farms in Southern Brazil. Anais da Academia Brasileira de Ciências, 83(3): 1069-1076.

FRÓES, C.; FÓES, G.; KRUMMENAUER, D.; BALLESTER, E.; POERSCH, L.H.; WASIELESKY, W.J. 2012 Fertilização orgí­¢nica com carbono no cultivo intensivo em viveiros com sistema de bioflocos do camarão branco Litopenaeus vannamei. Atlí­¢ntica, 34(1): 31-39.

GAONA, C.A.P.; POERSCH, L.H.; KRUMMENAUER, D.; FÓES, G.K.; WASIELESKY, W.J. 2011. The Effect of Solids Removal on Water Quality, Growth and Survival of Litopenaeus vannamei in a Biofloc Technology Culture System. International Journal of Recirculating Aquaculture, 12(1): 54-73.

GOLDBERG, E.D. 1963 Chemistry the oceans as a chemical system. In: HILL, MN. Composition of sea water comparative and descriptive oceanography. The Sea. Interscience Publishers, New York, USA. Vol. II. 03-25.

GILLES, R.; PEQUEUX, A. 1983 Interactions of chemical and osmotic regulation with the environment. In: VERNBERG, F.J; VERNBERG, W. B. (Eds.). The Biology of Crustacea: Environmental adaptations. New York: Academic Press. p. 109-177.

GUNALAN, B.; SOUNDARAPANDIAN, P.; DINAKARAN, G.K. 2010 Effect of Different Stocking Densities on the MBV Infected Seeds of Black Tiger Shrimp, Penaeus monodon (Fabricius). Asian Journal of Agricultural Sciences, 2(1): 5-8.

GUNALAN, B.; SOUNDARAPANDIAN, P.; KUMARAN, R.; ANAND, T.; KOTIYA, A.S.; MAHESWRAN, C.; PUSHPARAI, N. 2011 Growth of Cultured White Leg Shrimp Litopenaeus vannamei (Boone 1931) In Different Stocking Density. Advances in Applied Science Research, 2(3): 107-113.

GUO, B.; WANG, F.; DONG, S.; DONG, Y.; TIAN, X. 2010 The effects of cyclical temperature changes on growth and physiological status of Litopenaeus vannamei. Aquaculture International, 18(5): 921í 932.

HARGREAVES, J.A. 2013 Biofloc production systems for aquaculture. Southern regional aquaculture center, Publication No. 4503. 01-11.

HOU, C.; WANG, F.; DONG, S.; ZHU, Y.; YU, T. 2012 Effects of constant Ca2+ concentration in salinity fluctuations on growth and energy budget of juvenile Litopenaeus vannamei. Aquaculture International, 20(1): 177-188.

JORY, D.E.; CABRERA, T.R.; DUGGER, D.M.; FEGAN, D.; LEE, P.G.; LAWRENCE, A.L.; JACKSON, C.J.; MCINTOSH, R.P.; CASTAí­"˜EDA, J. 2001 A global review of shrimp feed management: Status and perspectives. In: BROWDY, C.L., JORY, D.E. (Eds.), The New Wave, Proceedings of the Special Session on Sustainable Shrimp Culture, Aquaculture. The World Aquaculture Society. p. 104-152.

KIM, S.K.; PANG, Z., SEO, H.C., CHO, Y.R., SAMOCHA, T., JANG, I.K. 2014 Effect of bioflocs on growth and immune activity of Pacific white shrimp, Litopenaeus vannamei postlarvae. Aquaculture Research, 45(2): 362í 371.

KRUMMENAUER, D.; WASIELESKY W.J.; CAVALLI, R.O.; PEIXOTO, S.; ZOGBI, P.R. 2006 Viabilidade do cultivo do camarão-rosa Farfantepenaeus paulensis (Crustacea: Decapoda) em gaiolas sob diferentes densidades durante o outono no sul do Brasil. Ciência Rural, 36(1): 252-257.

KRUMMENAUER, D.; PEIXOTO, S.; CAVALLI, R.O.; POERSCH, L.; WASIELESKY, W.J. 2011 Superintensive Culture of White Shrimp, Litopenaeus vannamei, in a Biofloc Technology System in Southern Brazil at Different Stocking Densities. Journal of the World Aquaculture Society, 42(5): 726-733.

KUMLU, M.; AKTAS, M.; EROLDOGAN, O.T. 2003. Pond culture of Penaeus semisulcatus in subtropical conditions of Turkiye. Journal of Fisheries and Aquatic Sciences, 20(3í 4): 367í 372.

LIU, H.; TAN, B.; YANG, J.; LIN, Y.; CHI, S.; DONG, X.; YANG, Q. 2014 Effect of various Na/K ratios in low-salinity well water on growth performance and physiological response of Pacific white shrimp Litopenaeus vannamei. Chinese Journal of Oceanology and Limnology, 32(5): 991-999.

LIU G.; ZHU, S.; LIU, D.; GUO, X.; YE, Z. 2017 Effects of stocking density of the white shrimp Litopenaeus vannamei (Boone) on immunities, antioxidant status, and resistance against Vibrio harveyi in a biofloc system. Fish & Shellfish Immunology, 67(1): 19-26.

MÁRQUEZ, J.Q.; ANDREATTA, E.R.; VINATEA, L.; OLIVERA, A.; BRITO, L.O. 2012 Efeito da densidade de estocagem nos parí­¢metros zootécnicos da criação de camarões Litopenaeus schmitti. Boletim do Instituto de Pesca, 38(2): 145-153.

McINTOSH, R.P. 1999 Changing paradigms in shrimp farming: 1. General description. The Advocate. The Global Aquaculture Alliance. August/October. 2(4-5): 42-45.

MENA-HERRERA, A.; GUTIERREZ-CORONA, C.; LINAN-CABELLO, M.; SUMANO-LOPEZ, H. 2006 Effects of Stocking Densities on Growth of the Pacific White Shrimp (Litopenaeus vannamei) in Earthen Ponds. The Israeli Journal of Aquaculture, 58(3): 205-213.

NUNES A.J.P.; ROCHA I.P. 2015 Overview and latest developments in shrimp and tilapia aquaculture in Northeast Brazil. The World Aquaculture Society, June p. 10-17.

O’BRIEN, C.J. 1994 The effects of temperature and salinity on growth and survival of juvenile prawns Penaeus esculentus (Haswell). Journal of Experimental Marine Biology and Ecology, 183(1): 133í 145.

OTOSHI, C.A.; NAGUWA, S.S.; FALESCH, F.C.; MOSS, S.M. 2007 Shrimp behavior may affect culture performance at super intensive stocking densities. Global Aquaculture Advocate, 10(2): 67í 69.

PEIXOTO, S.; WASIELESKY, W.J.; LOUZADA L.J. 2003 Comparative Analysis of Pink Shrimp Farfantepenaeus paulensis, and Pacific White Shrimp, in Extreme Southern Brazil. Journal of Applied Aquaculture, 14(1-2): 101-111.

POERSCH, L.; ALMEIDA, M.; GAONA, C.A.P.; FURTADO, P.S.; FÓES, G.; WASIELESKY, W.J. 2012 Bioflocos: alternativa econômica viável para produtores de camarões em viveiros. Panorama da aquicultura, 22(131): 36-43.

PONTES, C.S. 2006 Padrão de deslocamento do camarão branco Litopenaeus vannamei (Boone) (Crustacea, Decapoda, Penaeidae) nas fases clara e escura ao longo de 24 horas. Revista Brasileira de zoologia, 23(1): 223-227.

REGO, M.A.S.; SABBAG, O.J.; SOARES, R.; PEIXOTO, S. 2017 Risk analysis of the insertion of biofloc technology in a marine shrimp Litopenaeus vannamei production in a farm in Pernambuco, Brazil: A case study. Aquaculture, 469: 67í 71.

ROCHA, I.; MENDONí­"¡A, C. 2015 Domestic market for farmed shrimp in Brazil (Improved practices, rising demand alter industry) Global Aquaculture Advocate, March/April 44-46.

ROY, L.A.; DAVIS, D.A.; SAOUD, I.P.; BOYD, C.A.; PINE, H.J.; BOYD, C.E. 2010 Shrimp culture in inland low salinity waters. Reviews in Aquaculture, 2(4): 191-208.

RUIZ-VELAZCO, J.M.J.; HERNÁNDEZ-LLAMAS, A.; GOMEZ-MUí­"˜OZ, V.M. 2010 Management of stocking density, pond size, starting time of aeration, and duration of cultivation for intensive commercial production of shrimp Litopenaeus vannamei. Aquacultural Engineering, 43(3): 114í 119.

SAMOCHA, T.M.; SCHVEITZER, R.; KRUMMENAUER, D.; MORRIS, T.C.; 2012 Recent advances in super-intensive, zero exchange shrimp raceway systems. Global Aquaculture Advocate, 15(6): 70-71.

SOARES, R.; PEIXOTO, S.; BIANCHINI, A.; CAVALLI, R.; & WASIELESKY, W.J. 2012 Efeito da temperatura na sobrevivência, consumo alimentar e crescimento de pós-larvas do camarão-rosa Farfantepenaeus paulensis. Atlí­¢ntica, 34(1): 23-30.

SOWERS, A.D.; YOUNG, S.P.; GROSELL, M.; BROWDY, C.L.; TOMASSO, J.R. 2006 Hemolymph osmolality and cation concentrations in Litopenaeus vannamei during exposure to artificial sea salt or a mixed-ion solution: Relationship to potassium flux. Comparative Biochemistry and Physiology, Part A, 145(2): 176-180.

STRICKLAND, J.D.H.; PARSONS, T.R. 1972 A practical handbook of seawater analysis. Ottawa: Fishery Research Board Canada, 310 p.

TAW, N.C.; FUAT, H.; TARIGAM, N.; SIDABUTAR, K. 2008 Partial harvest/biofloc system promising for Pacific White Shrimp. Global Aquaculture Advocate, September. p. 84-87.

UNESCO, 1983 Chemical methods for use in marine environmental monitoring. Manual and Guides 12, Intergovernamental Oceanographic Commission. Paris, France. 53 p.

VALENZUELA-MADRIGAL, I.E.; VALENZUELA-QUIí­"˜ÓNEZ, W.; ESPARZA-LEAL, H.M.; RODRÍGUEZ-QUIROZ, G.; ARAGÓN-NORIEGA, E.A. 2017 Effects of ionic composition on growth and survival of white shrimp Litopenaeus vannamei culture at low-salinity well water. Revista de Biologí­­a Marina y Oceanografí­­a, 52(1): 103-112.

VAN WYK, P.; SCARPA, J. 1999 Water Quality and Management. In: VAN WYK, P et al. (Eds.), Farming Marine Shrimp in Recirculating Freshwater Systems. Florida Department of Agriculture and Consumer Services, Tallahassee. 06: 128-138.

VELAZQUEZ, M.P.; DAVIS, D.A.; ROY, L.A.; FELIX, M.L.G. 2012. Effects of water temperature and Na+:K+ ratio on physiological and production parameters of Litopenaeus vannamei reared in low salinity water. Aquaculture, 342-343(1): 13-17.

VENERO, J.A.; McABEE, B.; LAWSON, A.; LEWIS, B.L.; STOKES, A.D.; LEFFLER, J.W.; BROWDY, C.L. 2009 Greenhouse-enclosed superintensive shrimp production: alternative to traditional ponds in U.S. Global Aquaculture Advocate, 12(1): 61-64.

WALKER, S.J.; NEILL, W.H.; LAWRENCE, A.L.; GATLIN, D.M. 2011 Effects of temperature and starvation on ecophysiological performance of the Pacific white shrimp (Litopenaeus vannamei). Aquaculture, 319(3-4): 439í 445.

WASIELESKY, W.J.; ATWOOD, H.; STOKES, A.; BROWDY, C.L. 2006a Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, 258(1-4): 396-403.

WASIELESKY, W.J.; FRÓES, C.; FÓES, G.; KRUMMENAUER, D.; LARA, G.; POERSCH, L. 2013a Nursery of Litopenaeus vannamei reared in a biofloc system: The effect of stocking densities and compensatory growth. Journal of Shellfish Research, 32(3): 799-806.

WASIELESKY, W.J.; KRUMMENAUER, D.; LARA, G.; FÓES, G.; POERSCH, L. 2013b Cultivo de camarões em sistema de bioflocos: realidades e perspectivas. Revista ABCC. Ano XV, Junho nº 02 (1-7).

WYBAN, J.; WALSH, W.A.; GODIN, D.M. 1995 Temperature effects on growth, feeding rate and feed conversion of the pacific white shrimp Penaeus vannamei. Aquaculture, 138(1-4): 267-279.

Downloads

Published

2018-12-26

Most read articles by the same author(s)