DESEMPENHO E INCIDí­Å NCIA DE ANOMALIAS ESQUELÉTICAS EM LARVAS DE PACU SOB DIFERENTES PROTOCOLOS DE TRANSIÇÃO ALIMENTAR

Autores

  • Thiago Mendes de Freitas Fundação Instituto de Pesca do Estado do Rio de Janeiro -  FIPERJ http://orcid.org/0000-0002-4329-7401
  • Ivã Guidini Lopes Universidade Estadual Paulista -  UNESP, Centro de Aquicultura http://orcid.org/0000-0003-0381-7537
  • Taís da Silva Lopes Secretaria da Agricultura e Abastecimento -  SAA, Agência Paulista de Tecnologia dos Agronegócios -  APTA, Instituto de Pesca
  • Hellen Buzollo Universidade Estadual Paulista -  UNESP, Departamento de Biologia Aplicada Á  Agropecuária
  • Maria Célia Portella Universidade Estadual Paulista -  UNESP, Centro de Aquicultura http://orcid.org/0000-0003-4244-1202

DOI:

https://doi.org/10.20950/1678-2305.2019.45.1.433

Palavras-chave:

Piaractus mesopotamicus, anomalias esqueléticas, transição alimentar, larvicultura intensiva

Resumo

A oferta inadequada do alimento durante a fase larval dos peixes, além de prejudicar o crescimento e a sobrevivência, podem causar anomalias esqueléticas, uma vez que nutrientes essenciais estão envolvidos na osteogênese. O objetivo deste estudo foi avaliar os efeitos de dois perí­­odos de transição alimentar no crescimento, sobrevivência e na incidência de anomalias esqueléticas em larvas de pacu (Piaractus mesopotamicus) durante seu desenvolvimento inicial. Larvas com 5 dias pós-eclosão (dph) foram acondicionadas em tanques (100L), em uma densidade de 12 larvas L-1, durante 42 dias. O experimento foi conduzido em delineamento inteiramente casualizado e apresentou quatro tratamentos alimentares: (A) larvas alimentadas apenas com náuplios de artêmia; (D) larvas alimentadas apenas com dieta formulada; e dois tratamentos com diferentes perí­­odos de iní­­cio da transição entre alimento vivo e formulado, (W6) prematuro, aos seis dias de alimentação, e (W12) tardio, aos 12 dias de alimentação. Ao final do experimento, as larvas dos tratamentos A e W12 apresentaram médias de ganho em massa e sobrevivência maiores que as dos tratamentos W6 e D, no entanto a incidência de anomalias esqueléticas foi similar entre os tratamentos. Foi possí­­vel concluir que incidência de anomalias esqueléticas em larvas de P. mesopotamicus não foi associada aos protocolos de transição alimentar adotados nesse estudo e a transição alimentar tardia, aos 12 dias de alimentação, pode ser realizada sem comprometer o crescimento e sobrevivência das larvas.

Referências

Aragão, C.; Conceição, L.E.C.; Fyhn, H.J.; Dinis, M.T. 2004. Estimated amino acid requirements during early ontogeny in Fish with different life styles: gilthead seabream (Sparus aurata) and Senegalese sole (Solea senegalensis). Aquaculture, 242(1-4): 589-605. https://doi.org/10.1016/j.aquaculture.2004.09.015.

Argüello-Guevara, W.; Bohórquez-Cruz, M.; Silva, A. 2014. Malformaciones craneales en larvas y juveniles de peces cultivados. Latin American Journal of Aquatic Research, 42(5): 950-962. http://dx.doi.org/10.3856/vol42-issue5-fulltext-2.

Barbieri, E.; Bondioli, A.C.V. 2015. Acute toxicity of ammonia in Pacu fish (Piaractus mesopotamicus, Holmberg, 1887) at different temperatures levels. Aquaculture Research, 46(3): 565-571. https://doi.org/10.1111/are.12203

Boglino, A.; Darias, M.J.; Ortiz-Delgado, J.B.; Ozcan, F.; Estévez, A.; Andree, K.B.; Hontoria, F.; Sarasquete, C.; Gisbert, E. 2012. Commercial products for artemia enrichment affect growth performance, digestive system maturation, ossification and incidence of skeletal in Senegalese sole (Solea senegalensis) larvae. Aquaculture, 324-325: 290-302. https://doi.org/10.1016/j.aquaculture.2011.11.018.

Boglione, C.; Gavaia, P.; Koumoundouros, G.; Gisbert, E.; Moren, M.; Fontagne, S.; Witten, P.E. 2013a. Skeletal anomalies in reared European fish larvae and juveniles. Part 1: Normal and anomalous skeletogenic processes. Reviews in Aquaculture, 5(s1): S99í S120. https://doi.org/10.1111/raq.12015.

Boglione, C.; Pulcini, D.; Scardi, M.; Palamara, E.; Russo, T.; Cataudella, S. 2014. Skeletal anomaly monitoring in rainbow trout (Oncorhynchus mykiss, Walbaum 1792) reared under different conditions. PLOS ONE 9(10): e111294. https://doi.org/10.1371/journal.pone.0111294

Boglione, C.; Gagliardi, F.; Scardi, M.; Cataudella, S. 2001. Skeletal descriptors and quality assessment in larvae and post-larvae of wild-caught and hatchery-reared gilthead sea bream (Spaurus aurata L. 1758). Aquaculture, 192(1): 1-22. https://doi.org/10.1016/S0044-8486(00)00446-4.

Boglione, C.; Gisbert, E.; Gavaia, P.; Witten, P.E.; Moren, M.; Fontagné, S.; Koumoundouros, G. 2013b. Skeletal anomalies in reared European fish larvae and juveniles. Part 2: main typologies, occurrences and causative factors. Reviews in Aquaculture, 5(s1): S121-S167. https://doi.org/10.1111/raq.12016.

Cahu, C.; Zambonino-Infante, J.; Takeuchi, T. 2003. Nutritional components affecting skeletal development in fish larvae. Aquaculture, 227(1-4): 245-248. https://doi.org/10.1016/S0044-8486(03)00507-6.

Carvalho, A.P.; Oliva-Teles, A.; Bergot, P. 2003. A preliminary study on the molecular weight profile of soluble protein nitrogen in live food organisms for fish larvae. Aquaculture, 225(1-4): 445-449. https://doi.org/10.1016/S0044-8486(03)00308-9.

Cobcroft, J.M.; Shu-Chien, A.C.; Kuah, M.; Jaya-Ram, A.; Battaglene, S.C. 2012. The effects of tank colour, live food enrichment and greenwater on the early onset of jaw malformation in striped trumpeter larvae. Aquaculture, 356-357: 61-72. https://doi.org/10.1016/j.aquaculture.2012.05.035.

Corrales, J.; Thornton, C.; White, M.; Willett, K.L. 2014. Multigenerational effects of benzo[a]pyrene exposure on survival and developmental deformities in zebrafish larvae. Aquatic Toxicology, 148: 16-26. https://doi.org/10.1016/j.aquatox.2013.12.028.

Darias, M.J.; Lan Chow Wing, O.; Cahu, C.; Zambonino-Infante, J.L.; Mazurais, D. 2010. Double staining protocol for developing European sea bass (Dicentrarchus labrax) larvae. Journal of Applied Ichthyology, 26(2): 280-285. https://doi.org/10.1111/j.1439-0426.2010.01421.x.

Faulk, C.K.; Holt, G.J. 2009. Early weaning of southern ï¬"šounder, Paralichthys lethostigma, larvae and ontogeny of selected digestive enzymes. Aquaculture, 296(3-4): 213-218. https://doi.org/10.1016/j.aquaculture.2009.08.013.

Freitas, T. M. 2015. Capacidade digestiva durante a ontogenia de larvas de pacu, Piaractus mesopotamicus, Jaboticabal, Brasil. 150f. (Tese de Doutorado. Centro de Aquicultura da UNESP - CAUNESP. Disponí­­vel em: <https://repositorio.unesp.br/bitstream/handle/11449/134053/000855140.pdf?sequence=1&isAllowed=y> Acesso em: 10 jan. 2018.

Gjerde, B.; Pante, M.J.R.; Baeverfjord, G. 2005. Genetic variation for a vertebral deformity in Atlantic salmon (Salmo salar). Aquaculture, 244(1-4): 77-87. https://doi.org/10.1016/j.aquaculture.2004.12.002.

Hernandez, D.R.; Santinon, J.J.; Sanchez, S.; Domitrovic, H.A. 2013. Crecimiento, supervivencia e incidencia de malformaciones óseas en distintos biotipos de Rhamdia quelen durante la larvicultura. Latin American Journal of Aquatic Research, 41(5): 877-887. http://dx.doi.org/103856/vol41-issue5-fulltext-8.

Izquierdo, M.S.; Socorro, J.; Roo, J. 2010. Studies on the appearance of skeletal anomalies in red porgy: effect of culture intensiveness, feeding habits and nutritional quality of live preys. Journal of Applied Ichthyology, 26(2): 320-326. https://doi.org/10.1111/j.1439-0426.2010.01429.x.

Jomori, R.K.; Carneiro, D.J.; Malheiros, E.B.; Portella, M.C. 2005. Economic evaluation of Piaractus mesopotamicus juvenile production in different rearing systems. Aquaculture, 234(1-4): 175-183. https://doi.org/10.1016/j.aquaculture.2004.09.034.

Jomori, R.K.; Carneiro, D.J.; Malheiros, E.B.; Portella, M.C. 2003. Growth and survival of pacu Piaractus mesopotamicus (Holmberg, 1887) juveniles reared in ponds or at different initial larviculture periods indoors. Aquaculture, 221(1-4): 277-287. https://doi.org/10.1016/S0044-8486(03)00069-3.

Jomori, R.K.; Ducatti, C.; Carneiro, D.J.; Portella, M.C. 2008. Stable carbon (δ13C) and nitrogen (δ15N) isotopes as natural indicators of live and dry food in Piaractus mesopotamicus (Holmberg, 1887) larval tissue. Aquaculture Research, 39(4): 370-381. https://doi.org/10.1111/j.1365-2109.2007.01760.x.

Kause, A.; Ritola, O.; Paananen, T. 2007. Changes in the expression of genetic characteristics across cohorts in skeletal deformations of farmed salmonids. Genetics Selection Evolution, 39(5): 529-543. https://doi.org/10.1186/1297-9686-39-5-529.

Koumoundouros, G.; Divanach, P.; Kentouri, M. 2001. The effect of rearing conditions on development of saddleback syndrome and caudal fin deformities in Dentex dentex L. Aquaculture, 200(3-4): 285-304. https://doi.org/10.1016/s0044-8486(01)00552-x.

Lall, S.P.; Lewis-MCCrea, L.M.L. 2007. Role of nutrients in skeletal metabolism and pathology in fish - an overview. Aquaculture, 267(1-4): 3-19. https://doi.org/10.1016/j.aquaculture.2007.02.053.

Lanes, C.F.C.; Teshome, T.B.; Bolla, S.; Martins, C.; Fernandes, J.M.O.; Bianchini, A.; Kiron, V.; Babiak, I. 2012. Biochemical composition and performance of Atlantic cod (Gadus morhua L.) eggs and larvae obtained from farmed and wild broodstocks. Aquaculture, 324-325: 267-275. https://doi.org/10.1016/j.aquaculture.2011.10.036.

Leitão, N.J.; Pai-Silva, M.; Almeida, F.L.A.; Portella, M.C. 2011. The influence of initial feeding on muscle development and growth in pacu Piaractus mesopotamicus larvae. Aquaculture, 315(1-2): 78-85. https://doi.org/10.1016/j.aquaculture.2011.01.006.

Lopes, I.G.; Araújo-Dairiki, T.B.; Kojima, J.T.; Val, A.L.; Portella, M.C. 2018. Predicted 2100 climate change scenarios affects growth and skeletal development of tambaqui (Colossoma macropomum) larvae. Ecology and Evolution, in press. https://doi.org/10.1002/ece3.4429.

Lopes, T.S.; Freitas, T.M.; Jomori, R.K.; Carneiro, D.J.; Portella, M.C. 2014. Skeletal anomalies of pacu Piaractus mesopotamicus larvae from a wild-caught broodstock. Journal of the World Aquaculture Society, 45(1): 15-27. https://doi.org/10.1111/jwas.12092.

Menossi, O.C.C.; Takata, R.; Sanches-Amaya, M.I.; Freitas, T.M.; Yúfera, M.; Portella, M.C. 2012. Crescimento e estruturas do sistema digestório de larvas de pacu alimentadas com dieta microencapsulada produzida experimentalmente. Revista Brasileira de Zootecnia, 41(1): 1-10. http://dx.doi.org/10.1590/s1516-35982012000100001.

Portella, M.C.; Jomori, R.K.; Leitão, N.J.; Menossi, O.C.C.; Freitas, T.M.; Kojima, J.T.; Lopes, T.S.; Clavijo-Ayala, J.A.; Carneiro, D.J. 2014. Larval development of indigenous South American freshwater fish species, with particular reference to pacu (Piaractus mesopotamicus): A review. Aquaculture, 432: 402-417. https://doi.org/10.1016/j.aquaculture.2014.04.032.

Potthoff, T. 1984. Clearing and staining techniques. In: Moser, H. G.; Richards, W.J.; Cohen, D.M.; Fahay, M.P.; Kendall JR. A.W.; Richardson, S.L. Ontogeny and systematics of fishes. American Society of Ichthyologists and Herpetologists. Special publication, Allen Press, Lawrence, p. 35-37.

Roo, F.J.; Hernandez-Cruz, C.M.; Socorro, J.A.; Fernandez-Palacios, H.; Izquierdo, M.S. 2010. Occurrence of skeletal deformities and osteological development in red porgy Pagrus pagrus larvae cultured under different rearing techniques. Journal of Fish Biology, 77(6): 1309-1324. https://doi.org/10.1111/j.1095-8649.2010.02753.x.

Roo, F.J.; Hernández-Cruz, C.M.; Socorro, J.A.; Fernández-Palacios, H.; Montero, D.; Izquierdo, M.S. 2009. Effect of DHA content in rotifers on the occurrence of skeletal deformities in red porgy Pagrus pagrus (Linnaeus, 1758). Aquaculture, 287(1-2): 84-93. https://doi.org/10.1016/j.aquaculture.2008.10.010.

Roo, F.J.; Socorro, J.; Izquierdo, M.S. 2010. Effect of rearing techniques on skeletal deformities and osteological development in red porgy Pagrus pagrus (Linnaeus, 1758) larvae. Journal of Applied Ichthyology, 26(2): 372-376. https://doi.org/10.1111/j.1439-0426.2010.01437.x.

Saavedra, M.; Barr, Y.; Pousão-Ferreira, P.; Helland, S.; Yúfera, M.; Dinis, M.T.; Conceição, L.E.C. 2009. Supplementation of tryptophan and lysine in Diplodus sargus larval diet: effects on growth and skeletal deformities. Aquaculture Research, 40(10): 1191-1201. https://doi.org/10.1111/j.1365-2109.2009.02219.x.

Sfakianakis, D.G.; Georgakopoulou, E.; Papadakis, I.E.; Divanach, P.; Kentouri, M.; Koumoundouros, G. 2006. Environmental determinants of haemal lordosis in European sea bass, Dicentrarchus labrax (Linnaeus, 1758). Aquaculture, 254(1-4): 54-64. https://doi.org/10.1016/j.aquaculture.2005.10.028.

Sikorska, J.; Wolnicki, J.; Kamií­±ski, R.; Stolovich, V. 2012. Effect of different diets on body mineral content, growth, and survival of barbel, Barbus barbus (L.), larvae under controlled conditions. Archives of Polish Fisheries, 20(1): 3-10. [online] URL: <http://www.infish.com.pl/wydawnictwo/Archives/Fasc/work_pdf/Vol20Fasc1/Vol20-Fasc1-%20w01.pdf>

Tesser, M.B., Carneiro, D.J., Portella, M.C. 2005. Co-feeding of pacu (Piaractus mesopotamicus, Holmberg 1887) larvae with Artemia nauplii and microencapsulated diet. Journal of Applied Ichthyology, 17(2): 47-49. https://doi.org/10.1300/j028v17n02_04.

Villeneuve, L.; Gisbert, E.; Le Delliou, H.; Cahu, C.L.; Zambonino-Infante, J.L. 2005. Dietary levels of all-trans retinol affect retinoid nuclear receptor expression and skeletal development in European sea bass larvae. British Journal of Nutrition, 93(6): 791-801. https://doi.org/10.1079/BJN20051421.

Wittenrich, M. L.; Rhody, N.R.; Turingan, R.G.; Main, K.L. 2009. Coupling osteological development of the feeding apparatus with feeding performance in common snook, Centropomus undecimalis, larvae: identifying morphological constraints to feeding. Aquaculture, 294(3-4): 221-227. https://doi.org/10.1016/j.aquaculture.2009.06.006.

Yang, R.; Xie, C.; Fan, Q.; Gao, C.; Fang, L. 2010. Ontogeny of the digestive tract in yellow catï¬Âsh Pelteobagrus fulvidraco larvae. Aquaculture, 302(1-2): 112-123. https://doi.org/10.1016/j.aquaculture.2010.02.020.

Zambonino-Infante, J.L., Cahu, C.L. 2007. Dietary modulation of some digestive enzymes and metabolic processes in developing marine fish: applications to diet formulation. Aquaculture, 268(1-4): 98-105. https://doi.org/10.1016/j.aquaculture.2007.04.032.

Downloads

Publicado

2019-02-13

Edição

Seção

Artigo cientí­fico

Artigos mais lidos pelo mesmo(s) autor(es)