DESEMPENHO E INCIDíÅ NCIA DE ANOMALIAS ESQUELÉTICAS EM LARVAS DE PACU SOB DIFERENTES PROTOCOLOS DE TRANSIÇÃO ALIMENTAR
DOI:
https://doi.org/10.20950/1678-2305.2019.45.1.433Palavras-chave:
Piaractus mesopotamicus, anomalias esqueléticas, transição alimentar, larvicultura intensivaResumo
A oferta inadequada do alimento durante a fase larval dos peixes, além de prejudicar o crescimento e a sobrevivência, podem causar anomalias esqueléticas, uma vez que nutrientes essenciais estão envolvidos na osteogênese. O objetivo deste estudo foi avaliar os efeitos de dois períodos de transição alimentar no crescimento, sobrevivência e na incidência de anomalias esqueléticas em larvas de pacu (Piaractus mesopotamicus) durante seu desenvolvimento inicial. Larvas com 5 dias pós-eclosão (dph) foram acondicionadas em tanques (100L), em uma densidade de 12 larvas L-1, durante 42 dias. O experimento foi conduzido em delineamento inteiramente casualizado e apresentou quatro tratamentos alimentares: (A) larvas alimentadas apenas com náuplios de artêmia; (D) larvas alimentadas apenas com dieta formulada; e dois tratamentos com diferentes períodos de início da transição entre alimento vivo e formulado, (W6) prematuro, aos seis dias de alimentação, e (W12) tardio, aos 12 dias de alimentação. Ao final do experimento, as larvas dos tratamentos A e W12 apresentaram médias de ganho em massa e sobrevivência maiores que as dos tratamentos W6 e D, no entanto a incidência de anomalias esqueléticas foi similar entre os tratamentos. Foi possível concluir que incidência de anomalias esqueléticas em larvas de P. mesopotamicus não foi associada aos protocolos de transição alimentar adotados nesse estudo e a transição alimentar tardia, aos 12 dias de alimentação, pode ser realizada sem comprometer o crescimento e sobrevivência das larvas.
Referências
Argüello-Guevara, W.; Bohórquez-Cruz, M.; Silva, A. 2014. Malformaciones craneales en larvas y juveniles de peces cultivados. Latin American Journal of Aquatic Research, 42(5): 950-962. http://dx.doi.org/10.3856/vol42-issue5-fulltext-2.
Barbieri, E.; Bondioli, A.C.V. 2015. Acute toxicity of ammonia in Pacu fish (Piaractus mesopotamicus, Holmberg, 1887) at different temperatures levels. Aquaculture Research, 46(3): 565-571. https://doi.org/10.1111/are.12203
Boglino, A.; Darias, M.J.; Ortiz-Delgado, J.B.; Ozcan, F.; Estévez, A.; Andree, K.B.; Hontoria, F.; Sarasquete, C.; Gisbert, E. 2012. Commercial products for artemia enrichment affect growth performance, digestive system maturation, ossification and incidence of skeletal in Senegalese sole (Solea senegalensis) larvae. Aquaculture, 324-325: 290-302. https://doi.org/10.1016/j.aquaculture.2011.11.018.
Boglione, C.; Gavaia, P.; Koumoundouros, G.; Gisbert, E.; Moren, M.; Fontagne, S.; Witten, P.E. 2013a. Skeletal anomalies in reared European fish larvae and juveniles. Part 1: Normal and anomalous skeletogenic processes. Reviews in Aquaculture, 5(s1): S99í S120. https://doi.org/10.1111/raq.12015.
Boglione, C.; Pulcini, D.; Scardi, M.; Palamara, E.; Russo, T.; Cataudella, S. 2014. Skeletal anomaly monitoring in rainbow trout (Oncorhynchus mykiss, Walbaum 1792) reared under different conditions. PLOS ONE 9(10): e111294. https://doi.org/10.1371/journal.pone.0111294
Boglione, C.; Gagliardi, F.; Scardi, M.; Cataudella, S. 2001. Skeletal descriptors and quality assessment in larvae and post-larvae of wild-caught and hatchery-reared gilthead sea bream (Spaurus aurata L. 1758). Aquaculture, 192(1): 1-22. https://doi.org/10.1016/S0044-8486(00)00446-4.
Boglione, C.; Gisbert, E.; Gavaia, P.; Witten, P.E.; Moren, M.; Fontagné, S.; Koumoundouros, G. 2013b. Skeletal anomalies in reared European fish larvae and juveniles. Part 2: main typologies, occurrences and causative factors. Reviews in Aquaculture, 5(s1): S121-S167. https://doi.org/10.1111/raq.12016.
Cahu, C.; Zambonino-Infante, J.; Takeuchi, T. 2003. Nutritional components affecting skeletal development in fish larvae. Aquaculture, 227(1-4): 245-248. https://doi.org/10.1016/S0044-8486(03)00507-6.
Carvalho, A.P.; Oliva-Teles, A.; Bergot, P. 2003. A preliminary study on the molecular weight profile of soluble protein nitrogen in live food organisms for fish larvae. Aquaculture, 225(1-4): 445-449. https://doi.org/10.1016/S0044-8486(03)00308-9.
Cobcroft, J.M.; Shu-Chien, A.C.; Kuah, M.; Jaya-Ram, A.; Battaglene, S.C. 2012. The effects of tank colour, live food enrichment and greenwater on the early onset of jaw malformation in striped trumpeter larvae. Aquaculture, 356-357: 61-72. https://doi.org/10.1016/j.aquaculture.2012.05.035.
Corrales, J.; Thornton, C.; White, M.; Willett, K.L. 2014. Multigenerational effects of benzo[a]pyrene exposure on survival and developmental deformities in zebrafish larvae. Aquatic Toxicology, 148: 16-26. https://doi.org/10.1016/j.aquatox.2013.12.028.
Darias, M.J.; Lan Chow Wing, O.; Cahu, C.; Zambonino-Infante, J.L.; Mazurais, D. 2010. Double staining protocol for developing European sea bass (Dicentrarchus labrax) larvae. Journal of Applied Ichthyology, 26(2): 280-285. https://doi.org/10.1111/j.1439-0426.2010.01421.x.
Faulk, C.K.; Holt, G.J. 2009. Early weaning of southern ï¬"šounder, Paralichthys lethostigma, larvae and ontogeny of selected digestive enzymes. Aquaculture, 296(3-4): 213-218. https://doi.org/10.1016/j.aquaculture.2009.08.013.
Freitas, T. M. 2015. Capacidade digestiva durante a ontogenia de larvas de pacu, Piaractus mesopotamicus, Jaboticabal, Brasil. 150f. (Tese de Doutorado. Centro de Aquicultura da UNESP - CAUNESP. Disponível em: <https://repositorio.unesp.br/bitstream/handle/11449/134053/000855140.pdf?sequence=1&isAllowed=y> Acesso em: 10 jan. 2018.
Gjerde, B.; Pante, M.J.R.; Baeverfjord, G. 2005. Genetic variation for a vertebral deformity in Atlantic salmon (Salmo salar). Aquaculture, 244(1-4): 77-87. https://doi.org/10.1016/j.aquaculture.2004.12.002.
Hernandez, D.R.; Santinon, J.J.; Sanchez, S.; Domitrovic, H.A. 2013. Crecimiento, supervivencia e incidencia de malformaciones óseas en distintos biotipos de Rhamdia quelen durante la larvicultura. Latin American Journal of Aquatic Research, 41(5): 877-887. http://dx.doi.org/103856/vol41-issue5-fulltext-8.
Izquierdo, M.S.; Socorro, J.; Roo, J. 2010. Studies on the appearance of skeletal anomalies in red porgy: effect of culture intensiveness, feeding habits and nutritional quality of live preys. Journal of Applied Ichthyology, 26(2): 320-326. https://doi.org/10.1111/j.1439-0426.2010.01429.x.
Jomori, R.K.; Carneiro, D.J.; Malheiros, E.B.; Portella, M.C. 2005. Economic evaluation of Piaractus mesopotamicus juvenile production in different rearing systems. Aquaculture, 234(1-4): 175-183. https://doi.org/10.1016/j.aquaculture.2004.09.034.
Jomori, R.K.; Carneiro, D.J.; Malheiros, E.B.; Portella, M.C. 2003. Growth and survival of pacu Piaractus mesopotamicus (Holmberg, 1887) juveniles reared in ponds or at different initial larviculture periods indoors. Aquaculture, 221(1-4): 277-287. https://doi.org/10.1016/S0044-8486(03)00069-3.
Jomori, R.K.; Ducatti, C.; Carneiro, D.J.; Portella, M.C. 2008. Stable carbon (δ13C) and nitrogen (δ15N) isotopes as natural indicators of live and dry food in Piaractus mesopotamicus (Holmberg, 1887) larval tissue. Aquaculture Research, 39(4): 370-381. https://doi.org/10.1111/j.1365-2109.2007.01760.x.
Kause, A.; Ritola, O.; Paananen, T. 2007. Changes in the expression of genetic characteristics across cohorts in skeletal deformations of farmed salmonids. Genetics Selection Evolution, 39(5): 529-543. https://doi.org/10.1186/1297-9686-39-5-529.
Koumoundouros, G.; Divanach, P.; Kentouri, M. 2001. The effect of rearing conditions on development of saddleback syndrome and caudal fin deformities in Dentex dentex L. Aquaculture, 200(3-4): 285-304. https://doi.org/10.1016/s0044-8486(01)00552-x.
Lall, S.P.; Lewis-MCCrea, L.M.L. 2007. Role of nutrients in skeletal metabolism and pathology in fish - an overview. Aquaculture, 267(1-4): 3-19. https://doi.org/10.1016/j.aquaculture.2007.02.053.
Lanes, C.F.C.; Teshome, T.B.; Bolla, S.; Martins, C.; Fernandes, J.M.O.; Bianchini, A.; Kiron, V.; Babiak, I. 2012. Biochemical composition and performance of Atlantic cod (Gadus morhua L.) eggs and larvae obtained from farmed and wild broodstocks. Aquaculture, 324-325: 267-275. https://doi.org/10.1016/j.aquaculture.2011.10.036.
Leitão, N.J.; Pai-Silva, M.; Almeida, F.L.A.; Portella, M.C. 2011. The influence of initial feeding on muscle development and growth in pacu Piaractus mesopotamicus larvae. Aquaculture, 315(1-2): 78-85. https://doi.org/10.1016/j.aquaculture.2011.01.006.
Lopes, I.G.; Araújo-Dairiki, T.B.; Kojima, J.T.; Val, A.L.; Portella, M.C. 2018. Predicted 2100 climate change scenarios affects growth and skeletal development of tambaqui (Colossoma macropomum) larvae. Ecology and Evolution, in press. https://doi.org/10.1002/ece3.4429.
Lopes, T.S.; Freitas, T.M.; Jomori, R.K.; Carneiro, D.J.; Portella, M.C. 2014. Skeletal anomalies of pacu Piaractus mesopotamicus larvae from a wild-caught broodstock. Journal of the World Aquaculture Society, 45(1): 15-27. https://doi.org/10.1111/jwas.12092.
Menossi, O.C.C.; Takata, R.; Sanches-Amaya, M.I.; Freitas, T.M.; Yúfera, M.; Portella, M.C. 2012. Crescimento e estruturas do sistema digestório de larvas de pacu alimentadas com dieta microencapsulada produzida experimentalmente. Revista Brasileira de Zootecnia, 41(1): 1-10. http://dx.doi.org/10.1590/s1516-35982012000100001.
Portella, M.C.; Jomori, R.K.; Leitão, N.J.; Menossi, O.C.C.; Freitas, T.M.; Kojima, J.T.; Lopes, T.S.; Clavijo-Ayala, J.A.; Carneiro, D.J. 2014. Larval development of indigenous South American freshwater fish species, with particular reference to pacu (Piaractus mesopotamicus): A review. Aquaculture, 432: 402-417. https://doi.org/10.1016/j.aquaculture.2014.04.032.
Potthoff, T. 1984. Clearing and staining techniques. In: Moser, H. G.; Richards, W.J.; Cohen, D.M.; Fahay, M.P.; Kendall JR. A.W.; Richardson, S.L. Ontogeny and systematics of fishes. American Society of Ichthyologists and Herpetologists. Special publication, Allen Press, Lawrence, p. 35-37.
Roo, F.J.; Hernandez-Cruz, C.M.; Socorro, J.A.; Fernandez-Palacios, H.; Izquierdo, M.S. 2010. Occurrence of skeletal deformities and osteological development in red porgy Pagrus pagrus larvae cultured under different rearing techniques. Journal of Fish Biology, 77(6): 1309-1324. https://doi.org/10.1111/j.1095-8649.2010.02753.x.
Roo, F.J.; Hernández-Cruz, C.M.; Socorro, J.A.; Fernández-Palacios, H.; Montero, D.; Izquierdo, M.S. 2009. Effect of DHA content in rotifers on the occurrence of skeletal deformities in red porgy Pagrus pagrus (Linnaeus, 1758). Aquaculture, 287(1-2): 84-93. https://doi.org/10.1016/j.aquaculture.2008.10.010.
Roo, F.J.; Socorro, J.; Izquierdo, M.S. 2010. Effect of rearing techniques on skeletal deformities and osteological development in red porgy Pagrus pagrus (Linnaeus, 1758) larvae. Journal of Applied Ichthyology, 26(2): 372-376. https://doi.org/10.1111/j.1439-0426.2010.01437.x.
Saavedra, M.; Barr, Y.; Pousão-Ferreira, P.; Helland, S.; Yúfera, M.; Dinis, M.T.; Conceição, L.E.C. 2009. Supplementation of tryptophan and lysine in Diplodus sargus larval diet: effects on growth and skeletal deformities. Aquaculture Research, 40(10): 1191-1201. https://doi.org/10.1111/j.1365-2109.2009.02219.x.
Sfakianakis, D.G.; Georgakopoulou, E.; Papadakis, I.E.; Divanach, P.; Kentouri, M.; Koumoundouros, G. 2006. Environmental determinants of haemal lordosis in European sea bass, Dicentrarchus labrax (Linnaeus, 1758). Aquaculture, 254(1-4): 54-64. https://doi.org/10.1016/j.aquaculture.2005.10.028.
Sikorska, J.; Wolnicki, J.; Kamií±ski, R.; Stolovich, V. 2012. Effect of different diets on body mineral content, growth, and survival of barbel, Barbus barbus (L.), larvae under controlled conditions. Archives of Polish Fisheries, 20(1): 3-10. [online] URL: <http://www.infish.com.pl/wydawnictwo/Archives/Fasc/work_pdf/Vol20Fasc1/Vol20-Fasc1-%20w01.pdf>
Tesser, M.B., Carneiro, D.J., Portella, M.C. 2005. Co-feeding of pacu (Piaractus mesopotamicus, Holmberg 1887) larvae with Artemia nauplii and microencapsulated diet. Journal of Applied Ichthyology, 17(2): 47-49. https://doi.org/10.1300/j028v17n02_04.
Villeneuve, L.; Gisbert, E.; Le Delliou, H.; Cahu, C.L.; Zambonino-Infante, J.L. 2005. Dietary levels of all-trans retinol affect retinoid nuclear receptor expression and skeletal development in European sea bass larvae. British Journal of Nutrition, 93(6): 791-801. https://doi.org/10.1079/BJN20051421.
Wittenrich, M. L.; Rhody, N.R.; Turingan, R.G.; Main, K.L. 2009. Coupling osteological development of the feeding apparatus with feeding performance in common snook, Centropomus undecimalis, larvae: identifying morphological constraints to feeding. Aquaculture, 294(3-4): 221-227. https://doi.org/10.1016/j.aquaculture.2009.06.006.
Yang, R.; Xie, C.; Fan, Q.; Gao, C.; Fang, L. 2010. Ontogeny of the digestive tract in yellow catï¬Âsh Pelteobagrus fulvidraco larvae. Aquaculture, 302(1-2): 112-123. https://doi.org/10.1016/j.aquaculture.2010.02.020.
Zambonino-Infante, J.L., Cahu, C.L. 2007. Dietary modulation of some digestive enzymes and metabolic processes in developing marine fish: applications to diet formulation. Aquaculture, 268(1-4): 98-105. https://doi.org/10.1016/j.aquaculture.2007.04.032.