EFFECT OF THE C:N RATIO ON <i>Daphnia magna<i> (Straus, 1820) PRODUCTION USING TILAPIA FARMING WASTEWATER
DOI:
https://doi.org/10.20950/1678-2305.2019.45.3.463Keywords:
Cladocera, biorremediation, biofloc, microalgaeAbstract
The purpose of this study was to produce Daphnia magna in wastewater from Tilapia farmed in a biofloc system, to evaluate three different carbohydrate:nitrogen ratios. The experiment was conducted for 30 days following a completely randomized experimental design, with the three treatments: C:N 10:1, C:N 15:1 and C:N 20:1, all fed with Chlorella vulgaris. The physical-chemical variables of the water analyzed were: temperature, dissolved oxygen (DO), pH, TAN, NO2 , hardness and alkalinity. The following growth variables of the Daphnia were also evaluated: Maximum average density (MAD), Maximum density day (MDD), Specific growth rate (SGR), Doubling time (DT) and yield (Y). The water quality variables remained in the range of ideal conditions for the species, presenting significant differences (p <0.05) among the treatments for: pH, DO, hardness and alkalinity. Regarding the growth variables, significant differences (p <0.05) were observed, with higher MAD, Y and SGR values for the 10:1 treatment (3,433 ± 267 ind L-1, 245 ± 19 ind L-1 day- 1 and 45.3 ± 0.6% day-1, respectively) and lower for the 20:1 (1,011 ± 283 ind L-1, 55 ± 15 ind L-1 day-1 and 28.3 ± 1.6% day-1, respectively). The MDD occurred on day 12 for the 10:1 treatment and on day 18 for the 15:1 and 20:1 treatments. Alkalinity and hardness had stronger influence on the growth variables, which was also indicated by the simple linear regression. The principal component analysis (PCA), with 80% of explanation, identified high values of SGR, density and Y for the 10:1 and high values of alkalinity, hardness, DT and NO2 for the 20:1. Thus, the use of effluent from Tilapia farming in a biofloc system with a C:N ratio of 10:1 provided better production results for D. magna, demonstrating that it is an option for the production of live feed for aquaculture.
References
Alcántara-Azuara, A.K.; Contreras-Rodríguez, A.I.; Reyes-Arroyo, N.E.;Castro-Mejía, J.; Castaí±eda-Trinidad, H.; Ocampo-Cervantes,J.A. 2014. Comparación de la densidad población de Daphnia pulex Müller, 1785 en cultivos de laboratorio alimentadas con tres microalgas verdes unicelulares (Sphaerocystis sp., Chlorella vulgaris y Haematococcus pluvialis). Revista Digital del Departamento el Hombre y su Ambiente, 1 (5): 18-25. Available from: <https://www. researchgate.net/publication/274710395> Access on: 23 sep. 2018.
APHA American Public Health Association. 2005. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington DC.
Avnimelech, Y. 2009. Biofloc Technology í A Pratical Guide Book. The world Aquaculture Society. Baton Rouge, LA, USA. 182p.
Avnimelech, Y. 2012. Bioflocs technology- A Practical Guide Book. 2a ed.The World Aquaculture Society, Baton Rouge, LA, USA. 272p.
Azim, M.E.; Little, D.C. 2008. The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283: 29-35. https://doi.org/10.1016/j.aquaculture.2008.06.036
Beatrici, A. C. 2004. Avaliação da fertilidade e sensibilidade de Daphnia similis e Daphina magna (Crustacea, Cladocera) submetidas a diferentes tipos de dietas e meios de cultivo. Rio Grande do Sul, Brasil. (Dissertação de
Mestrado, Instituto de Biociências, UFRGS). Available from: <https:// www.lume.ufrgs.br/bitstream/handle/10183/4285/000454731.pdf?sequence=1&isAllowed=y> . Access on: 22 oct. 2018.
Bosisio, F.; Rezende, K.F.O.; Barbieri, E. 2017. Alterations in the hematological parameters of Juvenile Nile Tilapia (Oreochromis niloticus) submitted to different salinities. Pan-American Journal of Aquatic Sciences, 12(2): 146-154.
Boyd, C.E. 2015. Water quality: An introduction. 2ª ed. Springer, New York. 353p.
Brito, L.O.; Cardoso Junior, L.O.; Lavander, H.D.; Abreu, J.L.; Severi, W.;Gálvez, A.O. 2018. Bioremediation of shrimp biofloc wastewater using clam, seaweed and fish. Chemistry and ecology, 34(10): 901í 913. https://doi.org/10.1080/02757540.2018.1520843
Buratini, S.V.; Aragão, M.A. 2012. Food supplement in Daphnia similis and Ceriodaphnia dubia cultures: effects of yeast and feed digestion. Journal Brazilian Society Ecotoxicology, 7(1): 21-26. Available from: <http://siaiap32.
univali.br/seer/index.php/eec/article/view/3704> Access on: 18 oct. 2018.
Campos, C.V.F.S. 2017. Avaliação da biomassa do microcrustáceo Daphnia similis (Crustacea, Cladocera) cultivado com a inoculação da microalga Chlorella vulgaris (Beyrinck, 1890) em água do cultivo de tilápia do nilo em sistema de bioflocos. Recife, Brasil. (Dissertação de Mestrado, Universidade Federal Rural de Pernambuco, UFRPE). Available from: <http://tede2.ufrpe. br:8080/tede/handle/tede2/7070#preview-link0>. Access on: 10 sep. 2018.
Chen, S.; Ling, J.; Blancheton, J. P. 2006. Nitrification kinetics of biofilm as affected by water quality factors. Aquacultural Engineering, 34(3):179-197. https://doi.org/10.1016/j.aquaeng.2005.09.004
Chiu, S.T.; Shiu, Y.L.; Wu, T.M.; Lin, Y.S.; Liu, C.H. 2015. Improvement in nonspecific immunity and disease resistance of barramundi, Lates calcarifer(Bloch), by diets containing Daphnia similis meal. Fish & Shellfish
Immunology, 44(1): 172-179. https://doi.org/10.1016/j.fsi.2015.02.002
Crab, R.; Chielens, B.; Wille, M.; Bossier, P.; Verstraete, W. 2010. The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquaculture Research,41(4): 559-567. https://doi.org/10.1111/j.1365-2109.2009.02353.x
Darmawan, J. 2014. Pertumbuhan Populasi Daphnia sp. Pada Media Budidaya Dengan Penambahan Air Buangan Budidaya Ikan Lele Dumbo (Clarias Gariepinus Burchell, 1822)[Population Growth of Daphnia sp. in a Culture Media with Waste Water of African Catfish (Clarias Gariepinus) Intensif Culture]. Berita Biologi, 13(1). Available
from: http://e-journal.biologi.lipi.go.id/index.php/berita_biologi/article/view/654. Access on: 17 oct. 2018.
Day, S.B.; Salie, K.; Stander, H.B. 2016. A growth comparison among three commercial tilapia species in a biofloc system. Aquaculture International,24: 1309í 1322. https://doi.org/10.1007/s10499-016-9986-z
Ebeling, J.M.; Timmons, M.B.; Bisogni, J.J. 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture 257: 346í 358. https://doi.org/10.1016/j.aquaculture.2006.03.019 Ebert, D. 2005. Ecology, epidemiology and evolution of parasitism in Daphnia. Bethesda (MD): National Library of Medicine (US),National Center for Biotechnology Information. 110 p.
Emerenciano, M.G.C.; Martínez-córdova, L.R.; Martínez-porchas, M.;Miranda-baeza, A. 2017. Biofloc Technology (BFT): A Tool for Water Quality Management in Aquaculture. Water Quality, InTech, p. 91-109. http://dx.doi.org/10.5772/66416
Fereidouni, A. E.; Fathi, N; Khalesi, M. K. 2013. Enrichment of Daphnia magna with Canola Oil and its Effects on the Growth, Survival and Stress Resistance of the Caspian Kutum Larvae. Turkish Journal of Fisheries and Aquatic Sciences, 13(1): 119-126. https://doi.org/10.4194/1303-2712-v13_1_15.
Golterman, H.L.; Clymo, R.S.; Ohnstad, M.A.M. 1978. Methods for physical and chemical analysis of fresh waters. 2ª ed. Blackwell Scientific, Oxford. 214p.
Gross, J.; Ligges, U. 2015. Nortest: Tests for Normality. R package version 1.0-4. Available from: <https://CRAN.R-project.org/package=nortest> Access on: 02 oct. 2018.
Herawati, V.E.; Nugroho, R.A.; Pinandoyo; Hutabarat, J. 2017. Nutritional value content, biomass production and growth performance of Daphnia magna cultured with different animal wastes resulted from probiotic bacteria fermentation. IOP Conference Series: Earth and Environmental Science, 55(1): 012004. https://doi.org/10.1016/j.hjb.2015.08.001
Hoff, F.; Snell, T. 2004. Plankton Culture Manual. 6ª ed. Dade City, FL:Florida Aqua Farms. 183p.
Jin, H.; Zhang, Y.; Yang, R. 1991. Toxicity and distribution of copper in an aquatic microcosm under different alkalinity and hardness. Chemosphere, 22(5-6): 577-596. https://doi.org/10.1016/0045-6535(91)90069-P
Khatoon, H.; Banerjee, S.; Guan Yuan, G.T.; Haris, N.; Ikhwanuddin, M.;Ambak, M.A.; Endut A. 2016. Biofloc as a potential natural feed for shrimp postlarvae. International Biodeterioration and Biodegradation,113: 304í 309. https://doi.org/10.1016/j.ibiod.2016.04.006
Koroleff, F. 1976. Determination of nutrients. In: Grasshoff K (eds) Methods of seawater analysis, Verlag Chemie, Weinheim, p.117í 187.
Kumar, S.D.; Santhanan, P.; Ananth, S.; Kaviyarasan, M.; Nithya, P.;Dhanalakshmi, B.; Park, M. S.; Kim, M.K. 2017. Evaluation of suitability of wastewater-grown microalgae (Picochlorum maculatum) and copepod (Oithona rigida) as live feed for white leg shrimp Litopenaeus vannamei post-larvae. Aquaculture International, 25:
393í 411. https://doi.org/10.1007/s10499-016-0037-6
Lavens, P.; Sorgeloos, P. 1996. Manual on the production and use of live food for aquaculture. Food and Agriculture Organization of the United Nations, Rome, 305p.
Lima, P.C.; Abreu, J.L.; Silva, A.E.; Severi, W., Galvez, A.O.; Brito, L.O.2018. Nile tilapia fingerling cultivated in a low-salinity biofloc system at different stocking densities. Spanish Journal of Agricultural Research, 16(4): 0612. https://doi.org/10.5424/sjar/2018164-13222
Lourenço, S.O. 2006. Cultivo de microalgas marinhas: princípios e aplicações. São Carlos: Rima. 606p.
Luo, G.Z.; Avnimelech, Y.; Pan, Y.F.; Tan, H.X. 2013. Inorganic nitrogen dynamics in sequencing batch reactors using biofloc technology to treat aquaculture sludge. Aquacultural engineering, 52: 73-79. https://doi.org/10.1016/j.aquaeng.2012.09.003
Luo, G.; Gao, Q.; Wang, C.; Liu, W.; Sun, D.; Li, L.; Tan, H. 2014. Growth,digestive activity, welfare and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture, 422: 1-7.
https://doi.org/10.1016/j.aquaculture.2013.11.023 Manso, P.R.J. 2007. Produção em cativeiro de larvas de camarão marinho Litopenaeus vannamei: influência do campo magnético sobre a metamorfose e sobrevivência larval. Santa Catarina, Brazil (Dissertação de Mestrado. Programa de pós-graduação em engenharia de produção, UFSC). Available from: <https://repositorio.ufsc.br/bitstream/handle/123456789/90206/247679.pdf?sequence=1>
Access on: 16 sep. 2018.
Maranho, L.A.; Nieweglowski, A.M.A. 1995. Influência da dureza da água no estudo da reprodução de Daphnia magna (STRAUS, 1820).Pesticidas: Revista de Ecotoxicologia e Meio Ambiente, 5. http:// dx.doi.org/10.5380/pes.v5i0.39394
Martínez-Jerónimo, F. 2012. Description of the individual growth of Daphnia magna (Crustacea: Cladocera)through the von Bertalanffy growth equation. Effect of photoperiod and temperature. Limnology,
13(1): 65-71. https://doi.org/10.1007/s10201-011-0356-2
Martins, G.B.; Tarouco, F.; Rosa, C.E.; Robaldo, R.B. 2017. The utilization of sodium bicarbonate, calcium carbonate or hydroxide in biofloc system: water quality, growth performance and oxidative stress of Nile tilapia (Oreochromis niloticus). Aquaculture, 468: 10í 17. https://doi.org/10.1016/j.aquaculture.2016.09.046
Matosi, A.; Morioka, L.R.I.; Sant’Anna, E.S.; França, K.B. 2015. Teores de proteínas e lipídeos de Chlorella sp. cultivada em concentrado de dessalinização residual. Ciência Rural, 45(2): 364-370. http://dx.doi.org/10.1590/0103-8478cr20121104
Ocampo, L.E; Botero, M.C.; Restrepo, L.F. 2010. Evaluación Del crecimiento de un cultivo de Daphnia magna alimentado com Saccharomyces cerevisiae um enriquecimiento com avena soya.Revista Colombiana de Ciencias Pecuarias, 23(1): 78-85. Available from: <http://hdl.handle.net/10495/8330> Access on: 26 oct. 2018.
Otero, A.P.; Muí±oz, M.P.; Medina-robles, V.; Cruz-casallas, P. 2013. Efecto del alimento sobre variables productivas de dos especies de Cladóceros bajo condiciones de laboratorio. Revista MVZ Córdoba,18(1): 3642-3647. https://doi.org/10.21897/rmvz.130
Panigrahi, A.; Saranya, C.; Sundaram, M.; Kannan, S.V.; Das, R. R.; Kumar, R.S.; Otta, S. K. 2018. Carbon:Nitrogen (C:N) ratio level variation influences microbial community of the system and growth as well as immunity of shrimp (Litopenaeus vannamei) in biofloc based culture system. Fish & shellfish immunology, 81(1): 329-337. https://doi.org/10.1016/j.fsi.2018.07.035
Paray, B.A.; Al-Sadoon, M.K. 2016. Utilization of organic manure for culture of cladocerans, Daphnia carinata, Ceriodaphnia carnuta e copepod, Thermocyclops decipiens under laboratory conditions. Indian Journal of Geo-Marine Sciences, 45(3): 399-404. Available from: <http://nopr.niscair.res.in/bitstream/123456789/35039/1/
IJMS%2045%283%29%20399-404.pdf> Access on: 20 sep. 2018.
Pau, C.; Serra, T.; Colomer, J.; Casamitjana, X.; Sala, L.; Kampf, R.2013. Filtering capacity of Daphnia magna on sludge particles in treated wastewater. Water Research, 47(1): 181-186. https://doi.org/10.1016/j.watres.2012.09.047
Pinho, S.M.; Molinari, D.; de Mello, G.L.; Fitzsimmons, K.M.; Coelho Emerenciano, M.G. 2017. Effluent from a biofloc technology (BFT) tilapia culture on the aquaponics production of different lettuce varieties. Ecological Engineering, 103(1): 146í 153. https://doi.org/10.1016/j.ecoleng.2017.03.009
Provasoli, L. 1968. Media and prospects for the cultivation of marine algae. In:Watanabe A, Hattori A (ed) Cultures and collections of algae, pp.63-75
R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from: <https://www.R-project.org/>. Access on: 26 aug. 2018.
Samocha, T.M.; Patnaik, S.; Speed, M.; Ali, A.M.; Burger, J.M.; Almeida, R.V.; Ayub, Z.; Harisanto, M.; Horowitz, A.; Brock, D.L. 2007. Use of molasses as carbon source in limited discharge nursery and growout systems for Litopenaeus vannamei. Aquacultural Engineering, 36:184í 191. https://doi.org/10.1016/j.aquaeng.2006.10.004
Samocha, T.M.; Fricker, J.; Ali, A.M.; Shpigel, M.; Neori, A. 2015. Growth and nutrient uptake of the macroalga Gracilaria tikvahiae cultured with the shrimp Litopenaeus vannamei in an Integrated Multi-Trophic Aquaculture (IMTA) system. Aquaculture, 446: 263-271. https://doi.org/10.1016/j.aquaculture.2015.05.008
Silva, U.L.; Falcon, D.R.; Pessôa, M.N.D.C.; Correia, E.D.S. 2017. Carbon sources and C:N ratios on water quality for Nile tilapia farming in biofloc system. Revista Caatinga, 30(4): 1017í 1027. http://dx.doi.org/10.1590/1983-21252017v30n423rc
Souza, C.F.; Bastos, R.G.; Gomes, M.P.D.M.; Pulschen, A.A. 2015.Efficiency of domestic wastewater treatment plant for agricultural reuse. Revista Ambiente & Água, 10(3): 587-597. http://dx.doi.org/10.4136/ambi-agua.1549
Stevenson, R.A.A.; Sarma, S.S.S.; Nandini, S. 1998. Population dynamics of Brachionus calyciflorus (Rotifera: Brachionidae) in wastewater from food-processing industry in Mexico. Revista de biología tropical,46(3): 595-600. Available from: <http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77441998000300013&lng=en
&nrm=iso>. Access on: 20 sep. 2018.
Taipale, S.J.; Brett, M.T.; Hahn, M.W.; Martin-Creuzburg, D.; Yeung, S.;Hiltunen, M.; Kankaala, P. 2014. Differing Daphnia magna assimilation efficiencies for terrestrial, bacterial, and algal carbon and fatty acids.Ecology, 95(2): 563-576. https://doi.org/10.1890/13-0650.1
Tibbetts, S.M.; Mann, J.; Dumas, A. 2017. Apparent digestibility of nutrients, energy, essential amino acids and fatty acids of juvenile Atlantic salmon (Salmo salar L.) diets containing whole-cell or cell-ruptured Chlorella vulgaris meals at five dietary inclusion levels. Aquaculture,481: 25í 39. https://doi.org/10.1016/j.aquaculture.2017.08.018
Villarruel-López, A.; Ascencio, F.; Nuí±o, K. 2017. Microalgae, a potential natural functional food source í a Review. Polish Journal of Food and Nutrition Sciences, 67(4). https://doi.org/10.1515/pjfns-2017-0017
Wambach, X.F. 2013. Influência de diferentes densidades de estocagem no desempenho produtivo de tilápia do Nilo Oreochromis niloticus (Linnaeus, 1758) cultivada com tecnologia de bioflocos. Recife,Brazil. 78f. (Dissertação de Mestrado, Universidade Federal Rural de Pernambuco, UFRPE). Available from: <http://www.tede2.ufrpe.
br:8080/tede2/handle/tede2/6546> Access on: 02 sep. 2018.
Wickham, H. 2016. Readxl: Read Excel Files. R package version 0.1.1.Available from: <https://CRAN.R-project.org/package=readxl>Access on: 10 sep. 2018.
Xiang, F.; Geng, L.; Lü, K.; Zhang, J.; Minter, E.J.; Yang, Z. 2012. Effect of long-term nitrite exposure on the cladoceran Daphnia obtusa: survival, moults, and reproduction. Biochemical systematics and ecology, 41:
98-103. https://doi.org/10.1016/j.bse.2011.12.006
Zapata-Lovera, K.P.; Brito, L.O.; Lima, P.C.M.; Vinatea, L.A.A.; Gálvez,A.O.; Cárdenas, J.M.V. 2017. Cultivo de alevines de tilapia en sistema biofloc bajo diferentes relaciones carbono/nitrógeno. Boletim do Instituto de Pesca, 43(3): 399-407. https://doi.org/10.20950/1678-2305.2017v43n3p399