GENETIC IMPLICATIONS OF RESTOCKING PROGRAMS ON WILD POPULATIONS OF STREAKED PROCHILOD <i>Prochilodus lineatus<i>

Authors

  • Lin Hua Liu IWERSEN Departamento de Aquicultura, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina - UFSC
  • Claudio Manoel Rodrigues de MELO Departamento de Aquicultura, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina - UFSC
  • Cristiano LAZOSKI Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro - UFRJ, http://orcid.org/0000-0002-6322-4672
  • Evoy Zaniboni-FILHO Departamento de Aquicultura, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina - UFSC/Laboratório de Biologia e Cultivo de Peixes de Água Doce, Departamento de Aquicultura, Universidade Federal de Santa Catarina http://orcid.org/0000-0001-6457-2655
  • Josiane RIBOLLI Departamento de Aquicultura, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina - UFSC/Laboratório de Biologia e Cultivo de Peixes de Água Doce, Departamento de Aquicultura, Universidade Federal de Santa Catarina http://orcid.org/0000-0002-5553-9973

DOI:

https://doi.org/10.20950/1678-2305.2019.45.3.497

Keywords:

fishing resources, curimbatá, freshwater fish, population genetics, rebuilding

Abstract

Genetic diversity of wild and farmed populations is crucial, both for conservation of fish resources and fish culture development. To infer the genetic diversity and population structure of Streaked prochilod Prochilodus lineatus, individuals were sampled between 2007-2009 from four fish farms and from the Upper Uruguay River Basin, both in southern Brazil. Population structure was identified in both farmed and wild individuals through seven microsatellite loci. Bayesian analysis indicated three main groups, including two from fish farms. Pairwise genetic differentiation showed spatial structure between and within wild and farmed populations; however, the sampling design did not allow testing temporal structure according to isolation-by-time (IBT), which means that populations can breed within the same geographic distribaution, but reproduce at different times. Cultivated individuals presented lower diversity, allelic richness and effective population size, but higher inbreeding rates, compared to wild populations. These characteristics constitute warning signs against indiscriminate restocking of natural Prochilodus lineatus populations, a species sensitive to fragmented habitats, with farmed fish.

References

Allan, J.D.; Abell, R.; Hogan, Z.E.B.; Revenga, C.; Taylor, B.W.;Welcomme, R.L.; Winemiller, K. 2005. Overfishing of inland waters. AIBS Bulletin, 55(12): 1041-1051. https://doi.org/10.1641/0006-3568 (2005)055[1041:OOIW]2.0.CO;2

Allendorf, F.W.; Luikart, G. 2009. Conservation and the genetics of populations. John Wiley and Sons. N575.8. 602p.

Ashikaga, F.Y.; Orsi, M.L.; Oliveira, C.; Senhorini, J.A.; Foresti, F. 2015. The endangered species Brycon orbignyanus: genetic analysis and definition of priority areas for conservation. Environmental Biology of Fishes,
98(7): 1845-185. http://dx.doi.org/10.1007/s10641-015-0402-8

Baigún, C.; Minotti, P.; Oldani, N. 2013. Assessment of sábalo (Prochilodus lineatus) fisheries in the lower Paraná River basin (Argentina) based on hydrological, biological, and fishery indicators. Neotropical Ichthyology,11(1): 199-210. http://dx.doi.org/10.1590/S1679-62252013000100023

Barbosa, A.C.; Galzerani, F.; Corrêa, T.C.; Galetti Jr, P. M.; Hatanaka, T. 2008. Description of novel microsatellite loci in the Neotropical fish Prochilodus argenteus and cross-amplification in P. costatus and P. lineatus. Genetics and Molecular Biology, 31(1): 357-360. http:// dx.doi.org/10.1590/S1415-47572008000200032

Barbosa, A.C.; Correa, T.C.; Galzerani, F.; Galetti Jr, P.M.; Hatanaka, T. 2006.Thirteen polymorphic microsatellite loci in the Neotropical fish Prochilodus argenteus (Characiformes, Prochilodontidae). Molecular Ecology Notes,
6(3): 936-938. http://dx.doi.org/10.1590/S1415-47572008000200032

Bondioli, A.C.V.; Marques, R.C.; Toledo, L.F.A.; Barbieri, E. 2017. PCRRFLP for identification of the pearl oyster Pinctada imbricate from Brazil and Venezuela. Boletim do Instituto de Pesca, 43(4): 459-463.http://dx.doi.org/10.20950/1678-2305.2017v43n3p459

Braga-Silva, A.; Galetti, P.M. 2016. Evidence of isolation by time in freshwater migratory fish Prochilodus costatus (Characiformes, Prochilodontidae). Hydrobiologia, 765 (1): 159-167. https://doi.org/10.1007/s10750-015-2409-8

Calcagnotto, D.; Schaefer, S. A.; DeSalle, R. 2005. Relationships among characiform fishes inferred from analysis of nuclear and mitochondrial gene sequences. Molecular Phylogenetics and Evolution, 36(1): 135-
153. https://doi.org/10.1016/j.ympev.2005.01.004

Carvalho-Costa, L.F.; Hatanaka, T.; Galetti Jr, P.M. 2008. Evidence of lack of population substructuring in the Brazilian freshwater fish Prochilodus costatus. Genetics and Molecular Biology, 31(1): 377-380. http:// dx.doi.org/10.1590/S1415-47572008000200036

Castro, R.M.P.; Vari, R.P. 2004. Detritivores of the South American fish family Prochilodontidae (Teleostei: Ostariophysi: Characiformes):a phylogenetic and revisionary study. Smithsonian Contributions to Zoology, 622: 1í 90. https://doi.org/10.5479/si.00810282.622

Castro, R.M.C.; Vari, R.P. 2003. Family Prochilodontidae. Check List of the Freshwaters of South and Central America. EDIPUCRS, 1: 65-70.

de Oliveira, R.C.; Santos, M.D.C.F.; Bernardino, G.; Hrbek, T.; Farias, I.P. 2018. From river to farm: an evaluation of genetic diversity in wild and aquaculture stocks of Brycon amazonicus (Spix and Agassiz, 1829),Characidae, Bryconinae. Hydrobiologia, 805(1): 75-88. https://doi.org/10.1007/s10750-017-3278-0

Do, C.; Waples, R.S.; Peel, D.; Macbeth, G.M.; Tillett, B.J.; Ovenden,J.R. 2014. NeEstimator v2: re‐implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Molecular Ecology Resources, 14(1:09-214. https://doi.org/10.1111/1755-0998.12157

Duong, T.Y.; Scribner, K.T. 2018. Regional variation in genetic diversity between wild and cultured populations of bighead catfish (Clarias macrocephalus) in the Mekong Delta. Fisheries Research, 207: 118-125. https://doi.org/10.1016/j.fishres.2018.06.012

Doyle, R.W. 2016. Inbreeding and disease in tropical shrimp aquaculture: a reappraisal and caution. Aquaculture research, 47(1): 21-35. https:// doi.org/10.1111/are.12472

Earl, D.A. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2): 359-361. https://doi. org/10.1007/s12686-011-9548-7

Espinach Ros, A.; Sverlij, S.; Amestoy, F.; Spinetti, M. 1998. Migration pattern of the sábalo Prochilodus lineatus (Pisces, Prochilodontidae) tagged in the lower Uruguay River. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen, 26(5):2234-2236. https://doi.org/10.1080/03680770.1995.11901143

Evanno, G.; Regnaut, S.; Goudet, J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study.Molecular Ecology, 14(8): 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

Excoffier, L.; Lischer, H.E. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular ecology resources, 10(3): 564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

Falush, D.; Stephens, M.; Pritchard, J.K. 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164(4): 1567-1587. https://doi. org/10.1111/j.1471-8286.2007.01758.x

Ferreira, D.G.; Souza-Shibatta, L.; Shibatta, O.A.; Sofia, S. H.; Carlsson,J.; Dias, J.H.P.; Makrakis, S.; Makrakis, M.C. 2017. Genetic structure and diversity of migratory freshwater fish in a fragmented Neotropical river system. Reviews in Fish Biology and Fisheries, 27(1): 209-231.

https://doi.org/10.1007/s11160-016-9441-2

Fonseca, F. S.; Domingues, R.R.; Hallerman, E.M.; Hilsdorf, A.W. 2017. Genetic diversity of an imperiled Neotropical catfish and recommendations for its restoration. Frontiers in genetics, 8: 196.http://dx.doi.org/10.3389/fgene.2017.00196

Frankham, R. 2008. Genetic adaptation to captivity in species conservation programs. Molecular Ecology, 17(1): 325-333. https://doi.org/10.1111/j.1365-294X.2007.03399.x

Garcez, R.; Calcagnotto, D.; De Almeida‐Toledo, L.F. 2011. Population structure of the migratory fish Prochilodus lineatus (Characiformes) from Rio Grande basin (Brazil), an area fragmented by dams. Aquatic Conservation: Marine and Freshwater Ecosystems, 21(3): 268-275.https://doi.org/10.1002/aqc.1176

Goudet, J. 2001. FSTAT, a program to estimate and test gene diversities and fixation indices, version 2.9. 3. Disponí­­vel em: http://www2.unil.ch/popgen/softwares/fstat.htm.

Hashimoto, D.T.; Prado, F.D.; Senhorini, J.A.; Foresti, F.; Porto-Foresti, F. 2014. Aquaculture of Neotropical catfish hybrids: genetic strategies for conservation and management. In Carp and Catfish: Biology, Behavior and Conservation Strategies (Regan, B., ed), pp. 1-10. NovaScience Publishers, New York.

Hashimoto, D.T.; Senhorini, J.A.; Foresti, F.; Martí­­nez, P.; Porto-Foresti, F. 2014. Genetic identification of F1 and post-F1 Serrasalmid juvenile hybrids in Brazilian aquaculture. PloS one, 9(3): e89902. https://doi.org/10.1371/journal.pone.0089902

Hedrick, P.W. 2005. A standardized genetic differentiation measure. Evolution,59(8): 1633-1638. https://doi.org/10.1111/j.0014-3820.2005.tb01814.x

Hoeinghaus, D.J.; Agostinho, A.A.; Gomes, L.C.; Pelicice, F.M.; Okada,E.K.; Latini, J.D.; ... Winemiller, K.O. 2009. Effects of river impoundment on ecosystem services of large tropical rivers: embodied energy and market value of artisanal fisheries. Conservation Biology,23(5): 1222-1231. https://doi.org/10.1111/j.1523-1739.2009.01248.x

IBAMA. Instituto brasileiro do meio ambiente e dos recursos naturais renováveis. Instrução Normativa Nº- 146, De 10 de Janeiro De 2007. Disponí­­vel em: http://www.icmbio.gov.br/sisbio/images/stories/
instrucoes_normativas/IN146_2007_Empreendimentos.pdf

Jombart, T.; Devillard, S.; Balloux, F. 2010. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC genetics, 11(1): 94.

Kalinowski, S.T.; Taper, M. L.; Marshall T. C. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16: 1099í 1106. http://dx.doi.org/10.1111/j.1365-294X.2007.03089.x

Kessing, B.; Croom, H.; Martin, A.; McIntosh, C.; Mcmillan, W.O.;Palumbi, S. 1989. The simple fool’s guide to PCR. University of Hawaii, Honolulu. 45p.

Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.Journal of Molecular Evolution, 16(2): 111-120.

Librado, P.; Rozas, J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11): 1451- 1452. http://dx.doi.org/10.1093/bioinformatics/btp187

Meyer, A.; Biermann, C.H.; Orti, G. 1993. The phylogenetic position of the zebrafish (Danio rerio), a model system in developmental biology: an invitation to the comparative method. Proceedings of the Royal Society of London. Series B: Biological Sciences, 252(1335): 231-236. http://dx.doi.org/10.1098/rspb.1993.0070

Oliveira, C.; Avelino, G.S.; Abe, K.T.; Mariguela, T.C;, Benine, R.C.; Ortí­­, G.;...;Castro, R.M. C. 2011. Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling. BMC Evolutionary Biology, 11(1): 275. https://doi.org/10.1186/1471-2148-11-275

Pereira, L.H.G.; Foresti, F.; Oliveira, C. 2009. Genetic structure of the migratory catfish Pseudoplatystoma corruscans (Siluriformes: Pimelodidae) suggests homing behaviour. Ecology of Freshwater Fish,18(2): 215-225. https://doi.org/10.1111/j.1600-0633.2008.00338.x

Prado, F.D.; Vera, M.; Hermida, M.; Blanco, A.; Bouza, C.; Maes, G.E.; ...;AquaTrace Consortium. 2018. Tracing the genetic impact of farmed turbot Scophthalmus maximus on wild populations. Aquaculture Environment
Interactions, 10: 447-463. http://dx.doi.org/10.3354/aei00282

Pritchard, J.K.; Stephens, M.; Rosenberg, N.A.; Donnelly, P. 2000. Association mapping in structured populations. The American Journal of Human Genetics, 67(1): 170-181. https://doi.org/10.1086/302959

Raymond, M.; Rousset, F. 1995. An exact test for population differentiation.Evolution, 49(6): 1280-1283.

Ribolli, J.; Zaniboni-Filho, E. 2009. Individual contributions to pooledmilt fertilizations of silver catfish Rhamdia quelen. Neotropical Ichthyology, 7(4): 629-634. http://dx.doi.org/10.1590/S1679-62252009000400011

Ribolli, J.; Mino, C.I.; Zaniboni-Filho, E.; de Souza Guerreiro, T.C.; ReynalteTataje, D.A.; de Freitas, P.D.; Galetti, P.M. 2016. Preliminary insights into the genetic mating system of Neotropical Salminus brasiliensis: kinship assignment and parental reconstruction reveal polygynandry. Ichthyological Research, 63(1): 187-191. http://dx.doi.org/10.1007/s10228-015-0487-2

Ribolli, J.; Scaranto, B.M.; Shibatta, O.A; Bombardelli, R.A.; ZaniboniFilho, E. 2017. DNA barcoding confirms the occurrence of Rhamdia branneri and Rhamdia voulezi (Siluriformes: Heptapteridae) in the Iguaçu River Basin. Neotropical Ichthyology, 15(1). http://dx.doi.org/10.1590/1982-0224-20160147

Ribolli, J.; Zaniboni-Filho, E.; Freitas, P.D.; Galetti, P.M. 2018. Genetic evidences of non-reproductive shoaling in the freshwater fish Salminus brasiliensis. Hydrobiologia, 815(1): 65-72. https://doi.org/10.1007/s10750-018-3550-y

Roques, S.; Berrebi, P.; Rochard, E.; Acolas, M.L. 2018. Genetic monitoring for the successful re-stocking of a critically endangered diadromous fish with low diversity. Biological Conservation,221: 91-102. http://dx.doi.org/10.1016/j.biocon.2018.02.032

Rueda, E.C.; Carriquiriborde, P.; Monzón, A.M.; Somoza, G.M.; Ortí­­, G.2013. Seasonal variation in genetic population structure of sábalo (Prochilodus lineatus) in the Lower Uruguay River. Genetica, 141(7-9): 401-407. https://doi.org/10.1007/s10709-013-9739-0

Ryman, N.; Utter, F.; Laikre, L. 1995. Protection of intraspecific biodiversity of exploited fishes. Reviews in Fish Biology and Fisheries, 5(4): 417-446.

Sambrook, J.; Russell, D. W.; Maniatis, T. 2001. Molecular cloning, vol.1-3. Cold Spring Habour Laboratory Press, New York. 2100p.

Scaranto, B.M.S.; Ribolli, J.; Zaniboni‐Filho, E. 2018. DNA barcoding reveals blend of silver catfish Rhamdia species from fish farms in Southern Brazil. Aquaculture Research, 49(5): 1907-1913. https://doi.org/10.1111/are.13646

Schork, G.; Hermes-Silva, S.; Zaniboni-Filho, E. 2013. Analysis of fishing activity in the Itá reservoir, Upper Uruguay River, in the period 2004-2009. Brazilian Journal of Biology, 73(3): 559-571. http://dx.doi.org/10.1590/S1519-69842013000300014

Sivasundar, A.; Bermingham, E.; Ortí­­, G. 2001. Popula tion structure and biogeography of migratory freshwater fishes (Prochilodus:Characiformes) in major South American rivers. Molecular Ecology,10(2): 407-417. https://doi.org/10.1046/j.1365-294X.2001.01194.x

Small, M.P.; Currens, K.; Johnson, T.H., Frye, A.E.; Von Bargen, J.F. 2009.Impacts of supplementation: genetic diversity in supplemented and unsupplemented populations of summer chum salmon (Oncorhynchus
keta) in Puget Sound (Washington, USA). Canadian Journal of Fisheries and Aquatic Sciences, 66(8): 1216-1229. https://doi.org/10.1139/F09-068

Sverlij, S. B. 1993. Sinopsis de los datos biológicos y pesqueros del sábalo,Prochilodus lineatus (Valenciennes, 1847) (No. 154). Food and Agriculture Org. 64p.

Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.;Kumar, S. 2011.MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.
Molecular Biology and Evolution, 28(10): 2731-2739.

Tave, D. 1999. Inbreeding and brood stock management (No. 392). Food and Agriculture Org.

Thompson, J.D.; Higgins, D.G.; Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22): 4673-4680.

Vaini, J.O.; do Amaral Crispim, B.; dos Santos Silva, D.B.; Benites, C.; Russo, M.R.; Grisolia, A.B. 2016. Genetic variability of pure Pseudoplatystoma corruscans and Pseudoplatystoma reticulatum individuals in the Paraná and Paraguay River basins. Fisheries Science, 82(4): 605-611. http://dx.doi.org/10.1007/s12562-016-0999-3

Van Oosterhout, C.; Hutchinson, W.F.; Wills, D.P.; Shipley, P. 2004. MICRO‐CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4(3): 535-538.https://doi.org/10.1111/j.1471-8286.2004.00684.x

Viveiros, A.T.M.; Nascimento, A.F.; Orfão, L.H.; Isaú, Z.A. 2010. Motility and fertility of the subtropical freshwater fish streaked prochilod (Prochilodus lineatus) sperm cryopreserved in powdered coconut water. Theriogenology, 74(4): 551-556.

Waples, R.S.; Do, C. 2008. LDNE: a program for estimating effective population size from data on linkage disequilibrium. MolecularEecology Resources 8:753í 756. https://doi.org/10.1111/j.1755-0998.2007.02061.x

Ward, R.D. 2006. The importance of identifying spatial population structure in restocking and stock enhancement programmes. Fisheries Research,80(1): 9-18.

Weir, B.S.; Cockerham, C.C. 1984. Estimating F‐statistics for the analysis of population structure. Evolution, 38(6): 1358-1370.

Yazbeck, G.M.; Kalapothakis, E. 2007. Isolation and characterization of microsatellite DNA in the piracema fish Prochilodus lineatus (Characiformes). Genetics and Molecular Research, 6(4): 1026-1034.

Zaniboni-Filho E.; Schulz, U.H. 2003. Migratory fishes of the Uruguay River. In: Carolsfeld J.; Harvey,B.; Baer, A.; Ross,C. (eds). In: Migratory fishes of South America: biology, fisheries and conservation status. International Development Research Centre and the World Bank. Victoria, Canada. p. 157-194

Published

2019-09-02

Most read articles by the same author(s)

1 2 > >>