ADHESION OF PATHOGENIC BACTERIA TO POLYSTYRENE, SKIN AND GUT MUCUS OF GILTHEAD SEABREAM, INFECTIOUS CAPACITY AND ANTIBIOTICS SUSCEPTIBILITY

Authors

  • Said Ben Hamed Unidade Laboratorial de Referência de Patologia de Organismos Aquáticos, Instituto de Pesca, Centro de Pesquisa de Aquicultura,
  • Francisco Guardiola University of Murcia, Faculty of Biology, Department of Cell Biology & Histology, Fish Innate Immune System Group,
  • Patricia Morcillo University of Murcia, Faculty of Biology, Department of Cell Biology & Histology, Fish Innate Immune System Group,
  • Pilarga González-Párraga University of Murcia, Faculty of Biology, Department of Cell Biology & Histology, Fish Innate Immune System Group,
  • María José Tavares Ranzani-Paiva Unidade Laboratorial de Referência de Patologia de Organismos Aquáticos, Instituto de Pesca, Centro de Pesquisa de Aquicultura,
  • María Ángeles Esteban University of Murcia, Faculty of Biology, Department of Cell Biology & Histology, Fish Innate Immune System Group,

DOI:

https://doi.org/10.20950/1678-2305.2019.45.4.490

Keywords:

pathogen adhesion, skin mucus, gut mucus, SAF-cell line, antibiotic susceptibility, gilthead seabream (Sparus aurata L.)

Abstract

Linking proprieties of adhesion, infectious capacities and antibiotic resistance of pathogen bacteria could help to treat fish diseases. Adhesions of ten fish pathogenic bacteria were tested in microtiter plates vacant, coated with skin or gut mucus, fixed with methanol, stained with 2% crystal-violet and revealed by colorimetric method. Infectious capacity was performed by exposing gilthead seabream fibroblast cell line (SAF-1) to 107-108 CFUmL-1 of pathogen bacteria. Cell viability was measured 3h, 9h and 20 hours post-infection. The sensitivity to antibiotics was executed by disk diffusion. Data showed that all the bacteria tested adhere to polystyrene. For skin mucus, Vibrio harveyi, Vibrio alginolyticus, Halomonas venusta, and Aeromonas bivalvium were moderately adherent. Dietzia maris was strongly adherent. For gut mucus, 60% of tested bacteria were weakly adherent and 40% were non adherent. For infection, D. maris, V. harveyi and A. bivalvium decreased the cells viability to 89% after only 3h. After 20h, the viability percentage ranged between 1% and 32%. All isolates presented resistance to 1000 mg ml-1 of sulphonamide, 60% were resistant to sulfonamide and penicillin G. Present findings could be relevant in fish aquaculture and underscore the importance of the linkage between adhesion, infectious capacity, and antibiotic susceptibility of pathogen bacteria to avoid fish diseases.

 

References

Acosta, F.; Vivas, J.; Padilla, D.; Vega, J.; Bravo, J.; Grasso, V.; Real, F. 2009. Invasion and survival of Photobacterium damselae subsp. piscicida in nonphagocytic cells of gilthead sea bream Sparus aurata L. Journal of Fish Diseases, 32(6): 535-541. http://dx.doi.org/10.1111/j.1365-2761.2009.01023.x. PMid:19460085.

Angulo, F.J.; Collignon, P.; Wegener, H.C.; Braam, P.; Butler, C.D. 2005. The routine use of antibiotics to promote animal growth does little to benefit protein under nutrition in the developing world. Clinical Infectious Diseases, 41(7): 1007-1013. http://dx.doi.org/10.1086/433191. PMid:16142667.

Baker, A.S.; Greenham, L.W. 1988. Release of gentamicin from acrylic bone cement: elution and diffusion studies. The Journal of bone and joint surgery, 70(10): 1551-1557. http://dx.doi.org/10.2106/00004623-198870100-00015. PMid:3198680.

Balcázar, J.L.; Vendrell, D.; Blas, I.; Ruiz-Zarzuela, I.; Gironés, O.; Múzquiz, J.L. 2007. In vitro competitive adhesion and production of antagonistic compounds by lactic acid bacteria against fish pathogens. Veterinary Microbiology, 122(3-4): 373-380. http://dx.doi.org/10.1016/j.vetmic.2007.01.023. PMid:17336468.

Balebona, M.C.; Morinigo, M.A.; Faris, A.; Krovacek, K.; Mansson, I.; Bordas, M.A.; Borrego, J.J. 1995. Influence of salinity and pH on the adhesion of pathogenic Vibrio strains to Sparus aurata skin mucus. Aquaculture, 132(1-2): 113-120. http://dx.doi.org/10.1016/0044-8486(94)00376-Y.

Ballesteros, E.R.; Barbieri, E.; Pinto, A.B.; Oliveira, R.S.; Oliveira, A.J.F.C. 2016. qualidade microbiológica de ostras (Crassostrea sp) e de águas coletadas em cultivos e em bancos naturais de Cananeia (SP). Boletim do Instituto de Pesca, 42(1): 134-144. http://dx.doi.org/10.20950/1678-2305.2016v42n1p134.
Basson, A.; Flemming, L.A.; Chenia, H.Y. 2008. Evaluation of adherence, hydrophobicity, aggregation, and biofilm development of Flavobacterium johnsoniae-like isolates. Microbial Ecology, 55(1): 1-14. http://dx.doi.org/10.1007/s00248-007-9245-y. PMid:17401596.

Béjar, J.; Borrego, J.J.; Alvarez, M.C. 1997. A continuous cell line from the cultured marine fish gilthead seabream (Sparus aurata L.). Aquaculture, 150(1-2): 143-153. http://dx.doi.org/10.1016/S0044-8486(96)01469-X.

Ben Hamed, S.; Tavares Ranzani-Paiva, M.J.; Tachibana, L.; Carla Dias, D.; Ishikawa, C.M.; Esteban, M.A. 2018. Fish pathogen bacteria: adhesion, parameters influencing virulence and interaction with host cells. Fish & Shellfish Immunology, 80: 550-562. http://dx.doi.org/10.1016/j.fsi.2018.06.053. PMid:29966687.

Benhamed, S.; Guardiola, F.A.; Mars, M.; Esteban, M.A. 2014. Pathogen bacteria adhesion to skin mucus of fishes. Veterinary Microbiology, 171(1-2): 1-12. http://dx.doi.org/10.1016/j.vetmic.2014.03.008. PMid:24709124.

Blasco, M.D.; Esteve, C.; Alcaide, E. 2008. Multiresistant waterborne pathogens isolated from water reservoirs and cooling systems. Journal of Applied Microbiology, 105(2): 469-475. http://dx.doi.org/10.1111/j.1365-2672.2008.03765.x. PMid:18298535.

Bordas, M.A.; Balebona, M.C.; Rodriguez-Maroto, J.M.; Borrego, J.J.; Morinigo, M.A. 1998. Chemotaxis of pathogenic vibrio strains towards mucus surfaces of gilt-head sea bream (Sparus aurata L.). Applied and Environmental Microbiology, 64(4): 1573-1575. PMid:9575135.

Buschmann, A.H.; Tomova, A.; Lopez, A.; Maldonado, M.A.; Henriquez, L.A.; Ivanova, L.; Moy, F.; Godfrey, H.P.; Cabello, F.C. 2012. Salmon aquaculture and antimicrobial resistance in the marine environment. PLoS One, 7(8): e42724. http://dx.doi.org/10.1371/journal.pone.0042724. PMid:22905164.

Ceri, H.; Olson, M.E.; Stremick, C.; Read, R.R.; Morck, D.; Buret, A. 1999. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. Journal of Clinical Microbiology, 37(6): 1771-1776. PMid:10325322.

CLSI í  Clinical and Laboratory Standards Institute. CLSI document M07-A10: methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard. 10th ed. Wayne: CLSI; 2015a.

CLSI í  Clinical and Laboratory Standards Institute. 2015b. CLSI document M02-A12: performance standards for antimicrobial disk susceptibility tests: approved standard. 12th ed. Wayne: CLSI.

Cortes, M.E.; Jessika, C.B.; Ruben, D.S. 2011. Biofilm formation, control and novel strategies for eradication. In: Mendez-Vilas, A. (Ed.). Science against microbial pathogens: communicating current research and technological advances. World Scientific Publishing. p. 896-905.

Dash, S.; Das, S.K.; Samal, J.; Thatoi, H.N. 2018. Epidermal mucus, a major determinant in fish health: a review. Iranian Journal of Veterinary Research, 19(2): 72-81. PMid:30046316.

Doi, S.A.; Oliveira, A.J.F.C.; Barbieri, E. 2015. Determinação de coliformes na água e no tecido mole das ostras extraí­­das em Cananéia, São Paulo, Brasil. Engenharia Sanitaria e Ambiental, 20(1): 111-118. http://dx.doi.org/10.1590/S1413-41522015020000125658.

Dussud, C.; Hudec, C.; George, M.; Fabre, P.; Higgs, P.; Bruzaud, S.; Delort, A.M.; Eyheraguibel, B.; Meistertzheim, A.L.; Jacquin, J.; Cheng, J.; Callac, N.; Odobel, C.; Rabouille, S.; Ghiglione, J.F. 2018. Colonization of non-biodegradable and biodegradable plastics by marine microorganisms. Frontiers in Microbiology, 9: 1571. http://dx.doi.org/10.3389/fmicb.2018.01571. PMid:30072962.

Garcia, T.; Otto, K.; Kjelleberg, S.; Nelson, D.R. 1997. Growth of Vibrio anguillarum in salmon intestinal mucus. Applied and Environmental Microbiology, 63(3): 1034-1039. PMid:16535537.

Ghosh, S.; Chaudhuri, A. 1984. Analysis of three whole-arm translocation in a mouse sarcoma cell line. Cytogenetics and Cell Genetics, 38(3): 161-164. http://dx.doi.org/10.1159/000132053. PMid:6488897.

Gómez, G.D.; Balcazar, J.L. 2008. A review on the interactions between gut microbiota and innate immunity of fish. FEMS Immunology and Medical Microbiology, 52(2): 145-154. http://dx.doi.org/10.1111/j.1574-695X.2007.00343.x. PMid:18081845.

Guardiola, F.A.; Dioguardi, M.; Parisi, M.G.; Trapani, M.R.; Meseguer, J.; Cuesta, A.; Cammarata, M.; Esteban, M.A. 2015. Evaluation of waterborne exposure to heavy metals in innate immune defences present on skin mucus of gilthead seabream (Sparus aurata). Fish & Shellfish Immunology, 45(1): 112-123. http://dx.doi.org/10.1016/j.fsi.2015.02.010. PMid:25700783.

Hall-Stoodley, L.; Stoodley, P. 2005. Biofilm formation and dispersal and the transmission of human pathogens. Trends in Microbiology, 13(1): 7-10. http://dx.doi.org/10.1016/j.tim.2004.11.004. PMid:15639625.

Harbarth, S.; Samore, M.H.; Lichtenberg, D.; Carmeli, Y. 2000. Prolonged antibiotic prophylaxis after cardiovascular surgery and its effect on surgical site infections and antimicrobial resistance. Circulation, 101(25): 2916-2921. http://dx.doi.org/10.1161/01.CIR.101.25.2916. PMid:10869263.

Hsu, L.C.; Fang, F.; Borca-Tasciuc, D.A.; Worobo, R.W.; Moraru, C.I. 2013. Effect of micro- and nanoscale topography on the adhesion of bacterial cells to solid surfaces. Applied and Environmental Microbiology, 79(8): 2703-2712. http://dx.doi.org/10.1128/AEM.03436-12. PMid:23416997.

Lee, S.M.; Donaldson, G.P.; Mikulski, Z.; Boyajian, S.; Ley, K.; Mazmanian, S.K. 2013. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature, 501(7467): 426-429. http://dx.doi.org/10.1038/nature12447. PMid:23955152.

Limoli, D.H.; Jones, C.J.; Wozniak, D.J. 2015. Bacterial extracellular polysaccharides in biofilm formation and function. Microbiology Spectrum, 3(3). http://dx.doi.org/10.1128/microbiolspec.MB-0011-2014. PMid:26185074.

Lorite, G.S.; Rodrigues, C.M.; De Souza, A.A.; Kranz, C.; Mizaikoff, B.; Cotta, M.A. 2011. The role of conditioning film formation and surface chemical changes on Xylella fastidiosa adhesion and biofilm evolution. Journal of Colloid and Interface Science, 359(1): 289-295. http://dx.doi.org/10.1016/j.jcis.2011.03.066. PMid:21486669.

Matuschek, E.; Brown, D.F.J.; Kahlmeter, G. 2014. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clinical Microbiology and Infection, 20(4): O255-O266. http://dx.doi.org/10.1111/1469-0691.12373. PMid:24131428.

Matyar, F. 2007. Distribution and antimicrobial multiresistance in Gram-negative bacteria isolated from Turkish sea bass (Dicentrarchus labrax L., 1781) farm. Annals of Microbiology, 57(1): 35-38. http://dx.doi.org/10.1007/BF03175047.

Mií­±ana-Galbis, D.; Farfan, M.; Fuste, M.C.; Loren, J.G. 2007. Aeromonas bivalvium sp. nov., isolated from bivalve molluscs. International Journal of Systematic and Evolutionary Microbiology, 57(3): 582-587. http://dx.doi.org/10.1099/ijs.0.64497-0. PMid:17329789.

Nasopoulou, C.; Karantonis, H.C.; Zabetakis, I. 2011. Nutritional value of gilthead sea bream and sea bass. Dynamic Biochemistry, Process Biotechnology and Molecular Biology, 5(1): 32-40.

Nicolau Korres, A.M.; Aquije, G.M.; Buss, D.S.; Ventura, J.A.; Fernandes, P.M.; Fernandes, A.A. 2013. Comparison of Biofilm and Attachment Mechanisms ofa Phytopathological and Clinical Isolate of Klebsiella pneumoniae Subsp. pneumoniae. TheScientificWorldJournal, 2013: 925375. http://dx.doi.org/10.1155/2013/925375. PMid:24222755.

Okte, E. 2002. Grow-out of sea bream Sparus aurata in turkey particularly in a land-based farm with recirculation system in í­"¡anakkle, better use of water, nutrients and spaces. Turkish Journal of Fisheries and Aquatic Sciences, 2: 83-87.

Otto, M. 2014. Physical stress and bacterial colonization. FEMS Microbiology Reviews, 38(6): 1250-1270. http://dx.doi.org/10.1111/1574-6976.12088. PMid:25212723.

Ovando Fraiha, R.; Pereira, A.P.R.; Brito, E.D.C.A.; Borges, C.L.; Parente, A.F.A.; Perdomo, R.T.; Macedo, M.L.R.; Weber, S.S. 2019. Stress conditions in the host induce persister cells and influence biofilm formation by Staphylococcus epidermidis RP62A. Revista da Sociedade Brasileira de Medicina Tropical, 52: e20180001. http://dx.doi.org/10.1590/0037-8682-0001-2018. PMid:30785531.

Pizarro-Cerdá , J.; Cossart, P. 2006. Bacterial adhesion and entry into host cells. Cell, 124(4): 715-727. http://dx.doi.org/10.1016/j.cell.2006.02.012. PMid:16497583.

Quirynen, M.; Van Der Mei, H.C.; Bollen, C.M.; Schotte, A.; Marechal, M.; Doornbusch, G.I.; Naert, I.; Busscher, H.J.; Van Steenberghe, D. 1993. An in vivo study of the influence of the surface roughness of implants on the microbiology of supra- and subgingival plaque. Journal of Dental Research, 72(9): 1304-1309. http://dx.doi.org/10.1177/00220345930720090801. PMid:8395545.

Scheuerman, T.R.; Camper, A.K.; Hamilton, M.A. 1998. Effects of substratum topography on bacterial adhesion. Journal of Colloid and Interface Science, 208(1): 23-33. http://dx.doi.org/10.1006/jcis.1998.5717. PMid:9820746.

Stewart, P.S.; Costerton, J.W. 2001. Antibiotic resistance of bacteria in biofilms. Lancet, 358(9276): 135-138. http://dx.doi.org/10.1016/S0140-6736(01)05321-1. PMid:11463434.

Tang, H.; Cao, T.; Liang, X.; Wang, A.; Salley, S.O.; McAllister 2nd, J.; Ng, K.Y.S. 2009. Influence of silicone surface roughness and hydrophobicity on adhesion and colonization of Staphylococcus epidermidis. Journal of Biomedical Materials Research. Part A, 88(2): 454-463. http://dx.doi.org/10.1002/jbm.a.31788. PMid:18306290.

Tuomola, E.M.; Ouwehand, A.C.; Salminen, S.J. 1999. The effect of probiotic bacteria on the adhesion of pathogens to human intestinal mucus. FEMS Immunology and Medical Microbiology, 26(2): 137-142. http://dx.doi.org/10.1111/j.1574-695X.1999.tb01381.x. PMid:10536300.

Downloads

Published

2019-12-03

Most read articles by the same author(s)

<< < 1 2