CULTIVATION OF THE SEAWEED <i>Ulva</i> spp. WITH EFFLUENT FROM A SHRIMP BIOFLOC REARING SYSTEM: DIFFERENT SPECIES AND STOCKING DENSITY

Authors

DOI:

https://doi.org/10.20950/1678-2305.2020.46.3.602

Keywords:

BFT, biomitigation, growth performance, Litopenaeus vannamei, macroalgae, water quality

Abstract

This work evaluated the use of effluent from a marine shrimp biofloc rearing system to cultivate the green seaweed Ulva. First, the growth of two Ulva species, U. ohnoi and U. fasciata, was evaluated. Second, the best-performing species was cultivated under two different stocking densities (2 g L-1 and 4 g L-1) to evaluate both growth and nutrient uptake rates, considering total ammonia nitrogen, nitrate, and orthophosphate. In both cases, environmental variables were monitored, and the cultivation medium, consisting of 25% biofloc water and 75% seawater, was exchanged weekly. U. ohnoi grew significantly better, considering all variables evaluated (p<0.05). The smaller stocking density produced a higher specific growth rate (p<0.05). Yield, however, was unaffected (pâ"°¥0.05). No significant differences in the nutrient uptake rates were observed (pâ"°¥0.05). Overall, this work highlights the importance of species selection for seaweed destined for aquaculture. Additionally, it also optimizes the cultivation of seaweeds, specifically U. ohnoi, using effluent from biofloc systems.

References

APHA í  American Public Health Association, Water Works Association, Water Environment Federation. 2005. Standard methods for the examination of water and wastewater. 21st ed. Washington, DC: APHA. 1100p.

Avnimelech, Y. 2007. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264(1-4): 140-147. http://dx.doi.org/10.1016/j.aquaculture.2006.11.025.

Avnimelech, Y. 2015. Biofloc technology - a practical guidebook. 3rd ed. Baton Rouge: The World Aquaculture Society. 258p.

Avnimelech, Y.; Verdegem, M.C.J.; Kurup, M.; Keshavanath, P. 2008. Sustainable land-based aquaculture: rational utilization of water, land and feed resources. Mediterranean Aquaculture Journal, 1(1): 45-55. http://dx.doi.org/10.21608/maj.2008.2663.

BociÄ"¦g, K.; Robionek, A.; Rekowska, E.; BanaÅ"º, K. 2013. Effect of hydrodynamic disturbances on the biomass and architecture of the freshwater macroalga Chara globularis Thuill. Acta Botanica Gallica, 160(2): 149-156. http://dx.doi.org/10.1080/12538078.2013.822826.

Brito, L.O.; Arantes, R.; Magnotti, C.; Derner, R.; Pchara, F.; Olivera, A.; Vinatea, L. 2014. Water quality and growth of Pacific White shrimp Litopenaeus vannamei (Boone) in co-culture with green seaweed Ulva lactuca (Linaeus) in intensive system. Aquaculture International, 22: 497-508. http://dx.doi.org/10.1007/s10499-013-9659-0.

Burford, M.A.; Thompson, P.J.; McIntosh, R.P.; Bauman, R.H.; Pearson, D.C. 2004. The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity, zero-exchange system. Aquaculture, 232(1-4): 525-537. http://dx.doi.org/10.1016/S0044-8486(03)00541-6.

Chopin, T.; Robinson, S.M.C.; Troell, M.; Neori, A.; Buschmann, A.H.; Fang, J. 2008. Multitrophic integration for sustainable marine aquaculture. In: Jí­¸rgensen, S.E.; Fath, B.D. (Eds.). Encyclopedia of ecology. Oxford: Elsevier. v. 3, pp.2463-2475

Dauda, A.B. 2019. Biofloc technology: a review on the microbial interactions, operational parameters and implications to disease and health management of cultured aquatic animals. Reviews in Aquaculture, 12(2): 1193-1210. http://dx.doi.org/10.1111/raq.12379.

FAO í  Food and Agriculture Organization of the United Nations. 2020. State of world fisheries and aquaculture. Rome: FAO. 206p.

Fleurence, J.; Morançais, M.; Dumay, J.; Decottignies, P.; Turpin, V.; Munier, M.; Garcia-Bueno, N.; Jaouen, P. 2012. What are the prospects for using seaweed in human nutrition and for marine animals raised through aquaculture? Trends in Food Science & Technology, 27(1): 57-61. http://dx.doi.org/10.1016/j.tifs.2012.03.004.

Fortes, M.D.; Lüning, K. 1980. Growth rates of North Sea macroalgae in relation to temperature, irradiance and photoperiod. Helgolí­¤nder Meeresuntersuchungen, 34: 15-29. http://dx.doi.org/10.1007/BF01983538.

Ge, H.; Ni, Q.; Li, J.; Chen, Z.; Zhao, F. 2018. Integration of white shrimp (Litopenaeus vannamei) and green seaweed (Ulva prolifera) in minimumwater exchange aquaculture system. Journal of Applied Phycology, 31: 1425-1432. http://dx.doi.org/10.1007/s10811-018-1601-4.

Gensler, W.G. 1986. Advanced agricultural instrumentation: design and use. Dordrecht: Martinus Nijhoff Publishers. 480p.

Grasshoff, K.; Ehrhardt, M.; Kremling, K. 1983. Methods of seawater analysis. 2nd ed. New York: Verlag Chemie Weinhein. 419p.

Jamovi. 2019. The Jamovi Project. Version 1.1 [online] URL: <https://www.jamovi.org/>

Khoi, L.V.; Fotedar, R. 2011. Integration of western king prawn (Penaeus latisulcatus Kishnouye, 1896) and green seaweed (Ulva lactuca Linnaeus, 1753) in a closed recirculating aquaculture system. Aquaculture (Amsterdam, Netherlands), 322-323: 201-209. http://dx.doi.org/10.1016/j.aquaculture.2011.09.030.

Kim, J.K.; Yarish, C. 2014. Development of a sustainable land-based Gracilaria cultivation system. Algae - Korean Phycological Society, 29(3): 217-225. http://dx.doi.org/10.4490/algae.2014.29.3.217.

Lawton, R.J.; Mata, L.; Nys, R.; Paul, N.A. 2013. Algal bioremediation of waste Waters from land-based aquaculture using Ulva: selecting target species and strains. PLoS One, 15(3): e0231281. http://dx.doi. org/10.1371/journal.pone.0231281.

Mantri, V.A.; Singh, R.P.; Bijo, A.J.; Kumari, P.; Reddy, C.R.K.; Jha, B. 2011. Differential response of varying salinity and temperature on zoospore induction, regeneration and daily growth rate in Ulva fasciata (Chlorophyta, Ulvales). Journal of Applied Phycology, 23: 243-250. http://dx.doi.org/10.1007/s10811-010-9544-4.

Msuya, F. 2007. The effect of stocking density on the performance of the seaweed Ulva reticulata as a biofilter in earthen pond channels, Zanzibar, Tanzania. Western Indian Ocean Journal of Marine Science, 6(1): 65-72. http://dx.doi.org/10.4314/wiojms.v6i1.48227.

Msuya, F.E.; Kyewalyanga, M.S.; Salum, D. 2006. The performance of the seaweed Ulva reticulata as a biofilter in a low-tech, low-cost, gravity generated water flow regime in Zanzibar, Tanzania. Aquaculture, 254(1-4): 284-292. http://dx.doi.org/10.1016/j.aquaculture.2005.10.044.

Nakamura, M.; Kumagai, N.H.; Tamaoki, M.; Arita, K.; Ishii, Y.; Nakajima, N.; Yabe, T. 2020. Photosynthesis and growth of Ulva ohnoi and Ulva pertusa (Ulvophyceae) under high light and high temperature conditions, and implications for green tide in Japan. Phycological Research, 68(2): 152-160. http://dx.doi.org/10.1111/pre.12410.

Oca, J.; Cremades, J.; Jiménez, P.; Pintado, J.; Masaló, I. 2019. Culture of the seaweed Ulva ohnoi integrated in a Solea senegalensis recirculating system: influence of light and biomass stocking density on macroalgae
productivity. Journal of Applied Phycology, 31: 2461-2467. http://dx.doi.org/10.1007/s10811-019-01767-z.

Pedra, A.G.L.M.; Ramlov, F.; Maraschin, M.; Hayashi, L. 2017. Cultivation of the red seaweed Kappaphycus alvarezii with effluents from shrimp cultivation and brown seaweed extract: effects on growth and secondary
metabolism. Aquaculture (Amsterdam, Netherlands), 479: 297-303. http://dx.doi.org/10.1016/ j.aquaculture.2017.06.005.

Peí­±a-Rodrí­­guez, A.; Magallón-Barajas, F.J.; Cruz-Suárez, L.E.; Elizondo-González, R.; Moll, B. 2016. Effects of stocking density on the performance of brown shrimp Farfantepenaeus californiensis co-culture with the green seaweed Ulva clathrate. Aquaculture Research, 48(6): 1-9. http://dx.doi.org/10.1111/are.13114.

Poli, M.A.; Legarda, E.C.; Lorenzo, M.A.; Martins, M.A.; Vieira, F.N. 2019. Pacific white shrimp and Nile tilapia integrated in a biofloc system under different fish-stocking densities. Aquaculture, 498: 83-89. http://dx.doi.org/10.1016/j.aquaculture.2018.08.045.

Raven, J.; Taylor, R. 2003. Macroalgal growth in nutrient-enriched estuaries: a biogeochemical and evolutionary perspective. Water Air and Soil Pollution Focus, 3: 7-26. http://dx.doi.org/10.1023/A:1022167722654.

Ruangchuay, R.; Dahamat, S.; Chirapat, A.; Notoya, M. 2012. Effects of culture conditions on the growth and reproduction of gut weed, Ulva intestinalis Linnaeus (Ulvales, Chlorophyta). Songklanakarin Journal of Science and Technology, 34(5): 501-507.

Sand-Jensen, K. 1988. Minimum light requirements for growth in Ulva lactuca. Marine Ecology Progress Series, 50: 187-193.

Shin, S.K.; Kim, S.K.; Kim, J.H.; Han, T.; Yarish, C.; Kim, J. 2020. Effects of stocking density on the productivity and nutrient removal of Agarophyton vermiculophyllum in Paralichthys olivaceus biofloc effluent. Journal of Applied Phycology, 32: 2605-2614. http://dx.doi.org/10.1007/s10811-019-02014-1.

Silva, M.; Vieira, L.; Almeida, A.P.; Kijjoa, A. 2013. The marine macroalgae of the genus Ulva: chemistry, biological activities and potential applications. Journal of Oceanography and Marine Research, 1(1): 1-6. http://dx.doi.org/10.4172/2332-2632.1000101.

Strickland, J.D.H.; Parsons, T.R. 1972. A practical handbook of seawater analysis 2nd ed. Ottawa: Fisheries Research Board of Canada. 310p.

Yong, Y.S.; Yong, W.T.L.; Anton, A. 2013. Analysis of formulae for determination of seaweed growth rate. Journal of Applied Phycology, 25: 1831-1834. http://dx.doi.org/10.1007/s10811-013-0022-7.

Zar, J.H. 2010. Biostatistical analysis. 5th ed. New Jersey: Prentice Hall. 944p.

Zou, D. 2014. The effects of severe carbon limitation on the green seaweed, Ulva conglobate (Chlorophyta). Journal of Applied Phycology, 26: 2417-2424. http://dx.doi.org/10.1007/s10811-014-0268-8.

Downloads

Published

2020-12-15

Most read articles by the same author(s)

<< < 1 2