CULTIVO DA MACROALGA <i>Ulva</i> spp. COM EFLUENTE DE CRIAÇÃO DE CAMARÃO MARINHO EM BIOFLOCOS: DIFERENTES ESPÉCIES E DENSIDADE DE ESTOCAGEM

Autores

DOI:

https://doi.org/10.20950/1678-2305.2020.46.3.602

Palavras-chave:

BFT, biomitigation, growth performance, Litopenaeus vannamei, macroalgae, water quality

Resumo

Este trabalho avaliou o uso de água de um cultivo de camarão marinho em bioflocos como fertilizante no cultivo de Ulva. Inicialmente, o crescimento de duas espécies de Ulva, U. ohnoi e U. fasciata,  foram avaliado. Subsequentemente, a alga com melhor desempenho foi cultivada sob duas densidades de estocagem (2 g L-1 e 4 g L-1), e o crecimento e a absorção de nutrientes (nitrogênio amoniacal total, nitrato e ortofosfato) foram avaliados. Em ambos os casos, variáveis ambientais foram monitoradas e e o biofloco na concentração de 25% foi trocado semanalmente. U. ohnoi apresentou um crescimento significativamente melhor para todas as variáveis consideradas (p<0.05). A menor densidade de estocagem produziu uma taxa de crescimento especí­­fico significativamente maiore (p<0.05), embora a produtividade não tenha sido afetada (pâ"°¥0.05). Diferenças significativas na absorção de nutrientes também não foram observadas (pâ"°¥0.05). No geral, este trabalho destaca a importí­¢ncia da seleção de espécies de macroalgas destinadas í­Â  aquicultura. Além disso, otimiza a viabilidade de se cultivar macroalgas utilizando água de sistemas de bioflocos.

Referências

APHA í  American Public Health Association, Water Works Association, Water Environment Federation. 2005. Standard methods for the examination of water and wastewater. 21st ed. Washington, DC: APHA. 1100p.

Avnimelech, Y. 2007. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264(1-4): 140-147. http://dx.doi.org/10.1016/j.aquaculture.2006.11.025.

Avnimelech, Y. 2015. Biofloc technology - a practical guidebook. 3rd ed. Baton Rouge: The World Aquaculture Society. 258p.

Avnimelech, Y.; Verdegem, M.C.J.; Kurup, M.; Keshavanath, P. 2008. Sustainable land-based aquaculture: rational utilization of water, land and feed resources. Mediterranean Aquaculture Journal, 1(1): 45-55. http://dx.doi.org/10.21608/maj.2008.2663.

BociÄ"¦g, K.; Robionek, A.; Rekowska, E.; BanaÅ"º, K. 2013. Effect of hydrodynamic disturbances on the biomass and architecture of the freshwater macroalga Chara globularis Thuill. Acta Botanica Gallica, 160(2): 149-156. http://dx.doi.org/10.1080/12538078.2013.822826.

Brito, L.O.; Arantes, R.; Magnotti, C.; Derner, R.; Pchara, F.; Olivera, A.; Vinatea, L. 2014. Water quality and growth of Pacific White shrimp Litopenaeus vannamei (Boone) in co-culture with green seaweed Ulva lactuca (Linaeus) in intensive system. Aquaculture International, 22: 497-508. http://dx.doi.org/10.1007/s10499-013-9659-0.

Burford, M.A.; Thompson, P.J.; McIntosh, R.P.; Bauman, R.H.; Pearson, D.C. 2004. The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity, zero-exchange system. Aquaculture, 232(1-4): 525-537. http://dx.doi.org/10.1016/S0044-8486(03)00541-6.

Chopin, T.; Robinson, S.M.C.; Troell, M.; Neori, A.; Buschmann, A.H.; Fang, J. 2008. Multitrophic integration for sustainable marine aquaculture. In: Jí­¸rgensen, S.E.; Fath, B.D. (Eds.). Encyclopedia of ecology. Oxford: Elsevier. v. 3, pp.2463-2475

Dauda, A.B. 2019. Biofloc technology: a review on the microbial interactions, operational parameters and implications to disease and health management of cultured aquatic animals. Reviews in Aquaculture, 12(2): 1193-1210. http://dx.doi.org/10.1111/raq.12379.

FAO í  Food and Agriculture Organization of the United Nations. 2020. State of world fisheries and aquaculture. Rome: FAO. 206p.

Fleurence, J.; Morançais, M.; Dumay, J.; Decottignies, P.; Turpin, V.; Munier, M.; Garcia-Bueno, N.; Jaouen, P. 2012. What are the prospects for using seaweed in human nutrition and for marine animals raised through aquaculture? Trends in Food Science & Technology, 27(1): 57-61. http://dx.doi.org/10.1016/j.tifs.2012.03.004.

Fortes, M.D.; Lüning, K. 1980. Growth rates of North Sea macroalgae in relation to temperature, irradiance and photoperiod. Helgolí­¤nder Meeresuntersuchungen, 34: 15-29. http://dx.doi.org/10.1007/BF01983538.

Ge, H.; Ni, Q.; Li, J.; Chen, Z.; Zhao, F. 2018. Integration of white shrimp (Litopenaeus vannamei) and green seaweed (Ulva prolifera) in minimumwater exchange aquaculture system. Journal of Applied Phycology, 31: 1425-1432. http://dx.doi.org/10.1007/s10811-018-1601-4.

Gensler, W.G. 1986. Advanced agricultural instrumentation: design and use. Dordrecht: Martinus Nijhoff Publishers. 480p.

Grasshoff, K.; Ehrhardt, M.; Kremling, K. 1983. Methods of seawater analysis. 2nd ed. New York: Verlag Chemie Weinhein. 419p.

Jamovi. 2019. The Jamovi Project. Version 1.1 [online] URL: <https://www.jamovi.org/>

Khoi, L.V.; Fotedar, R. 2011. Integration of western king prawn (Penaeus latisulcatus Kishnouye, 1896) and green seaweed (Ulva lactuca Linnaeus, 1753) in a closed recirculating aquaculture system. Aquaculture (Amsterdam, Netherlands), 322-323: 201-209. http://dx.doi.org/10.1016/j.aquaculture.2011.09.030.

Kim, J.K.; Yarish, C. 2014. Development of a sustainable land-based Gracilaria cultivation system. Algae - Korean Phycological Society, 29(3): 217-225. http://dx.doi.org/10.4490/algae.2014.29.3.217.

Lawton, R.J.; Mata, L.; Nys, R.; Paul, N.A. 2013. Algal bioremediation of waste Waters from land-based aquaculture using Ulva: selecting target species and strains. PLoS One, 15(3): e0231281. http://dx.doi. org/10.1371/journal.pone.0231281.

Mantri, V.A.; Singh, R.P.; Bijo, A.J.; Kumari, P.; Reddy, C.R.K.; Jha, B. 2011. Differential response of varying salinity and temperature on zoospore induction, regeneration and daily growth rate in Ulva fasciata (Chlorophyta, Ulvales). Journal of Applied Phycology, 23: 243-250. http://dx.doi.org/10.1007/s10811-010-9544-4.

Msuya, F. 2007. The effect of stocking density on the performance of the seaweed Ulva reticulata as a biofilter in earthen pond channels, Zanzibar, Tanzania. Western Indian Ocean Journal of Marine Science, 6(1): 65-72. http://dx.doi.org/10.4314/wiojms.v6i1.48227.

Msuya, F.E.; Kyewalyanga, M.S.; Salum, D. 2006. The performance of the seaweed Ulva reticulata as a biofilter in a low-tech, low-cost, gravity generated water flow regime in Zanzibar, Tanzania. Aquaculture, 254(1-4): 284-292. http://dx.doi.org/10.1016/j.aquaculture.2005.10.044.

Nakamura, M.; Kumagai, N.H.; Tamaoki, M.; Arita, K.; Ishii, Y.; Nakajima, N.; Yabe, T. 2020. Photosynthesis and growth of Ulva ohnoi and Ulva pertusa (Ulvophyceae) under high light and high temperature conditions, and implications for green tide in Japan. Phycological Research, 68(2): 152-160. http://dx.doi.org/10.1111/pre.12410.

Oca, J.; Cremades, J.; Jiménez, P.; Pintado, J.; Masaló, I. 2019. Culture of the seaweed Ulva ohnoi integrated in a Solea senegalensis recirculating system: influence of light and biomass stocking density on macroalgae
productivity. Journal of Applied Phycology, 31: 2461-2467. http://dx.doi.org/10.1007/s10811-019-01767-z.

Pedra, A.G.L.M.; Ramlov, F.; Maraschin, M.; Hayashi, L. 2017. Cultivation of the red seaweed Kappaphycus alvarezii with effluents from shrimp cultivation and brown seaweed extract: effects on growth and secondary
metabolism. Aquaculture (Amsterdam, Netherlands), 479: 297-303. http://dx.doi.org/10.1016/ j.aquaculture.2017.06.005.

Peí­±a-Rodrí­­guez, A.; Magallón-Barajas, F.J.; Cruz-Suárez, L.E.; Elizondo-González, R.; Moll, B. 2016. Effects of stocking density on the performance of brown shrimp Farfantepenaeus californiensis co-culture with the green seaweed Ulva clathrate. Aquaculture Research, 48(6): 1-9. http://dx.doi.org/10.1111/are.13114.

Poli, M.A.; Legarda, E.C.; Lorenzo, M.A.; Martins, M.A.; Vieira, F.N. 2019. Pacific white shrimp and Nile tilapia integrated in a biofloc system under different fish-stocking densities. Aquaculture, 498: 83-89. http://dx.doi.org/10.1016/j.aquaculture.2018.08.045.

Raven, J.; Taylor, R. 2003. Macroalgal growth in nutrient-enriched estuaries: a biogeochemical and evolutionary perspective. Water Air and Soil Pollution Focus, 3: 7-26. http://dx.doi.org/10.1023/A:1022167722654.

Ruangchuay, R.; Dahamat, S.; Chirapat, A.; Notoya, M. 2012. Effects of culture conditions on the growth and reproduction of gut weed, Ulva intestinalis Linnaeus (Ulvales, Chlorophyta). Songklanakarin Journal of Science and Technology, 34(5): 501-507.

Sand-Jensen, K. 1988. Minimum light requirements for growth in Ulva lactuca. Marine Ecology Progress Series, 50: 187-193.

Shin, S.K.; Kim, S.K.; Kim, J.H.; Han, T.; Yarish, C.; Kim, J. 2020. Effects of stocking density on the productivity and nutrient removal of Agarophyton vermiculophyllum in Paralichthys olivaceus biofloc effluent. Journal of Applied Phycology, 32: 2605-2614. http://dx.doi.org/10.1007/s10811-019-02014-1.

Silva, M.; Vieira, L.; Almeida, A.P.; Kijjoa, A. 2013. The marine macroalgae of the genus Ulva: chemistry, biological activities and potential applications. Journal of Oceanography and Marine Research, 1(1): 1-6. http://dx.doi.org/10.4172/2332-2632.1000101.

Strickland, J.D.H.; Parsons, T.R. 1972. A practical handbook of seawater analysis 2nd ed. Ottawa: Fisheries Research Board of Canada. 310p.

Yong, Y.S.; Yong, W.T.L.; Anton, A. 2013. Analysis of formulae for determination of seaweed growth rate. Journal of Applied Phycology, 25: 1831-1834. http://dx.doi.org/10.1007/s10811-013-0022-7.

Zar, J.H. 2010. Biostatistical analysis. 5th ed. New Jersey: Prentice Hall. 944p.

Zou, D. 2014. The effects of severe carbon limitation on the green seaweed, Ulva conglobate (Chlorophyta). Journal of Applied Phycology, 26: 2417-2424. http://dx.doi.org/10.1007/s10811-014-0268-8.

Downloads

Publicado

2020-12-15

Edição

Seção

Artigo cientí­fico

Artigos mais lidos pelo mesmo(s) autor(es)

<< < 1 2