PERFORMANCE OF PACIFIC WHITE SHRIMP FED PROBIOTICS <i>Lactobacillus plantarum</i> AND <i>Bacillus</i> spp. IN A BIOFLOC SYSTEM

Authors

  • Norha Constanza BOLÍVAR-RAMÍREZ Universidade Federal de Santa Catarina -  UFSC, Departamento de Aquicultura, Laboratório de Camarí­µes Marinhos -  LCM. http://orcid.org/0000-0002-1522-1178
  • Ana Clara Chede Pereira SILVA Universidade Federal de Santa Catarina -  UFSC, Departamento de Aquicultura, Laboratório de Camarí­µes Marinhos -  LCM. http://orcid.org/0000-0002-7489-2668
  • Gabriela Soltes FERREIRA Universidade Federal de Santa Catarina -  UFSC, Departamento de Aquicultura, Laboratório de Camarí­µes Marinhos -  LCM. http://orcid.org/0000-0002-1210-5534
  • Walter Quadros SEIFFERT Universidade Federal de Santa Catarina -  UFSC, Departamento de Aquicultura, Laboratório de Camarí­µes Marinhos -  LCM. http://orcid.org/0000-0001-6362-349X
  • Felipe do Nascimento VIEIRA Universidade Federal de Santa Catarina -  UFSC, Departamento de Aquicultura, Laboratório de Camarí­µes Marinhos -  LCM. http://orcid.org/0000-0001-9794-8671

DOI:

https://doi.org/10.20950/1678-2305/bip.2021.47.e652

Keywords:

Litopenaeus vannamei;, Vibrio spp.;, BFT;, microbiology.

Abstract

The present study evaluated the use of the indigenous probiotic Lactobacillus plantarum and commercial probiotic containing Bacillus spp. in the culture of L. vannamei in a biofloc system. Shrimp  were fed with four diets: L. plantarum, Bacillus spp., L. plantarum + Bacillus spp. and feed with no additives. Growth performance, water quality variables and microbiological counting of water and digestive tract of shrimp  were determined. The control group and L. plantarum treatment showed better growth performance. The highest feed conversion ratio (FCR) and the lowest survival were obtained in the L. plantarum + Bacillus spp. treatment, which had significantly higher nitrite values. Vibrio spp. counts in the water were lower in the L. plantarum and L. plantarum + Bacillus spp. treatments and were lower in the intestinal tract in the L. plantarum treatment. Lactic acid bacteria (LAB) was higher in the L. plantarum treatment in the water and digestive tract. The count of total heterotrophic bacteria (THB) deferred only among Bacillus spp. and L. plantarum + Bacillus spp. treatment, being higher in the latter group. In Bacillus spp. treatment, no presence of LAB was detected in the water or intestinal tract. We conclude that the use of L. plantarum combined with Bacillus spp. negatively affected survival, FCR and water quality, but that the use of L. plantarum alone reduced the presence of Vibrio spp., even though it did not change the growth performance of L. vannamei.

References

Abriouel, H.; Franz, C.M.; Omar, N.B.; Gálvez, A. 2011. Diversity and applications of Bacillus bacteriocins. FEMS microbiology reviews, 35(1): 201-232. https://doi.org/10.1111/j.1574-6976.2010.00244.x.

APHA - American Public Health Association, American Water Works Association and Water Pollution Control Association. 2005. Standard Methods for the Examination of Water and Wastewater (21st ed), American Public Health Association, Washington.

Arias-Moscoso, J.L.; Espinoza-Barrón, L.G.; Miranda-Baeza, A.; Rivas-Vega, M.E.; Nieves-Soto, M. 2018. Effect of commercial probiotics addition in a biofloc shrimp farm during the nursery phase in zero water exchange. Aquaculture Reports, 11: 47-52. https://doi.org/10.1016/j.aqrep.2018.06.001.

Avnimelech, Y. 1999. Carbon/nitrogen ratio as control element in aquaculture systems. Aquaculture, 176(3-4): 227-235. https://doi.org/10.1016/S0044-8486(99)00085-X

Bernal, M.G.; Marrero, R.M.; Campa-Córdova, Á.I.; Mazón-Suástegui, J.M. 2017. Probiotic effect of Streptomyces strains alone or in combination with Bacillus and Lactobacillus in juveniles of the white shrimp Litopenaeus vannamei. Aquaculture International, 25(2): 927-939. https://doi.org/10.1007/s10499-016-0085-y.

Boonthai, T.; Vuthiphandchai, V; Nimrat, S. 2011. Probiotic bacteria effects on growth and bacterial composition of black tiger shrimp (Penaeus monodon). Aquaculture Nutrition, 17(6): 634-644. https://doi.org/10.1111/j.1365-2095.2011.00865.x.

Diaz, R.J.; Rosenberg, R. 1995. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology. An annual review, 33: 245-303.

Emerenciano, M.G.C.; Martí­­nez-Córdova, L.R.; Martí­­nez-Porchas, M.; Miranda-Baeza, A. 2017. Biofloc technology (BFT): a tool for water quality management in aquaculture. In: Tutu, H. (ed.). Water quality, chapter 5, pp. 2-109. https://doi.org/10.5772/66416.

FAO - Food and Agriculture Organization of the United Nations. 2020. The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome, 224p. https://doi.org/10.4060/ca9229en.

Ferreira, G.S.; Bolí­­var, N.C.; Pereira, S.A.; Guertler, C.; Vieira, F.N.; Seiffert, W.Q. 2015. Microbial biofloc as source of probiotic bacteria for the culture of Litopenaeus vannamei. Aquaculture, 448: 273-279. https://doi.org/10.1016/j.aquaculture.2015.06.006.

Franco, R.; Martí­­n, L.; Arenal, A.; Santiesteban, D.; Sotolongo, J.; Cabrera, H.; Castillo, N.M. 2017. Evaluation of two probiotics used during farm production of white shrimp Litopenaeus vannamei (Crustacea: Decapoda). Aquaculture Research, 48(4): 1936-1950. https://doi.org/10.1111/are.13031.

Furtado, P.S.; Poersch, L.H.; Wasielesky Jr, W. 2011. Effect of calcium hydroxide, carbonate and sodium bicarbonate on water quality and zootechnical performance of shrimp Litopenaeus vannamei reared in bio-flocs technology (BFT) systems. Aquaculture, 321(1-2): 130-135. https://doi.org/10.1016/j.aquaculture.2011.08.034.

Gopal, S.; Otta, S.K.; Kumar, S.; Karunasagar, I.; Nishibuchi, M.; Karunasagar, I. 2005. The occurrence of Vibrio species in tropical shrimp culture environments; implications for food safety. International Journal of Food Microbiology, 102(2): 151-159. https://doi.org/10.1016/j.ijfoodmicro.2004.12.011.

Gullian, M.; Thompson, F.; Rodriguez, J. 2004. Selection of probiotic bacteria and study of their immunostimulatory effect in Penaeus vannamei. Aquaculture, 233(1-4): 1-14. https://doi.org/10.1016/j.aquaculture.2003.09.013.

Hostins, B.; Lara, G.; Decamp, O.; Cesar, D.E.; Wasielesky Jr, W. 2017. Efficacy and variations in bacterial density in the gut of Litopenaeus vannamei reared in a BFT system and in clear water supplemented with a commercial probiotic mixture. Aquaculture, 480: 58-64. https://doi.org/10.1016/j.aquaculture.2017.07.036.

Huerta-Rábago, J.A.; Martí­­nez-Porchas, M.; Miranda-Baeza, A.; Nieves-Soto, M.; Rivas-Vega, M.E.; Martí­­nez-Córdova, L.R. 2019. Addition of commercial probiotic in a biofloc shrimp farm of Litopenaeus vannamei during the nursery phase: effect on bacterial diversity using massive sequencing 16S rRNA. Aquaculture, 502: 391-399. https://doi.org/10.1016/j.aquaculture.2018.12.055.

Jamal, M.T.; Abdulrahman, I.A.; Al Harbi, M.; Chithambaran, S. 2019. Probiotics as alternative control measures in shrimp aquaculture: A review. Journal of Applied Biology & Biotechnology, 7(3): 69-77. https://doi.org/10.7324/JABB.2019.70313.

Kewcharoen, W.; Srisapoome, P. 2019. Probiotic effects of Bacillus spp. from Pacific white shrimp (Litopenaeus vannamei) on water quality and shrimp growth, immune responses, and resistance to Vibrio parahaemolyticus (AHPND strains). Fish & Shellfish Immunology, 94: 175-189. https://doi.org/10.1016/j.fsi.2019.09.013.

Knipe, H.; Temperton, B.; Lange, A.; Bass, D.; Tyler, C. R. 2021. Probiotics and competitive exclusion of pathogens in shrimp aquaculture. Reviews in Aquaculture, 13(1): 324-352. https://doi.org/10.1111/raq.12477.

Kongnum, K.; Hongpattarakere, T. 2012. Effect of Lactobacillus plantarum isolated from digestive tract of wild shrimp on growth and survival of white shrimp (Litopenaeus vannamei) challenged with Vibrio harveyi. Fish & Shellfish Immunology, 32(1): 170-177. https://doi.org/10.1016/j.fsi.2011.11.008.

Krummenauer, D.; Samocha, T.; Poersch, L.; Lara, G.; Wasielesky, W., Jr. 2014. The reuse of water on the culture of pacific white shrimp, Litopenaeus vannamei, in BFT System. Journal of World Aquaculture Society, 45(1): 3-14. https://doi.org/10.1111/jwas.12093.

Kumar, A.; Suresh Babu, P.P.; Roy, S.D.; Razvi, S.S.; Charan, R. 2014. Synergistic effects of two probiotic bacteria on growth, biochemical, and immunological responses of Litopenaeus vannamei (Boone, 1931). The Israeli Journal of Aquaculture-Bamidgeh, 66: 1-8.

Lazado, C.C.; Caipang, C.M.A.; Estante, E.G. 2015. Prospects of host-associated microorganisms in fish and penaeids as probiotics with immunomodulatory functions. Fish & Shellfish Immunology, 45(1): 2-12. https://doi.org/10.1016/j.fsi.2015.02.023.

Merrifield, D.L.; Dimitroglou, A.; Foey, A.; Davies, S.J.; Baker, R.R.; Bí­¸gwald, J.; Castex, M.; Ringí­¸, E. 2010. The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture, 302(1-2): 1-18. https://doi.org/10.1016/j.aquaculture.2010.02.007.

Nayak, S.K. 2010. Probiotics and immunity: a fish perspective. Fish & Shellfish Immunology, 29(1): 2-14. https://doi.org/10.1016/j.fsi.2010.02.017.

Nguyen, T.T.G.; Nguyen, T.C.; Leelakriangsak, M.; Pham, T.T.; Pham, Q.H.; Lueangthuwapranit, C. 2018. Promotion of Lactobacillus plantarum on growth and resistance against acute hepatopancreatic necrosis disease pathogens in white-leg shrimp (Litopenaeus vannamei). The Thai Journal of Veterinary Medicine, 48(1): 19-28.

Ramí­­rez, N.B.; Seiffert, W.Q.; Vieira, F.D.N.; Mourino, J.L.P.; Jesus, G.F.A.; Ferreira, G.S.; Andreatta, E.R. 2013. Dieta suplementada com prebiótico, probiótico e simbiótico no cultivo de camarões marinhos. Pesquisa Agropecuária Brasileira, 48(8): 913-919. https://doi.org/10.1590/S0100-204X2013000800015.

Ray, A.J.; Seaborn, G.; Leffler, J.W.; Wilde, S.B.; Lawson, A.; Browdy, C.L. 2010. Characterization of microbial communities in minimal-exchange, intensive aquaculture systems and the effects of suspended solids management. Aquaculture, 310(1-2): 130-138. https://doi.org/10.1016/j.aquaculture.2010.10.019.

Ringí­¸, E. 2020. Probiotics in shellfish aquaculture. Aquaculture and Fisheries, 5(1): 1-27. https://doi.org/10.1016/j.aaf.2019.12.001.

Ringí­¸, E.; Van Doan, H.; Lee, S.H.; Soltani, M.; Hoseinifar, S.H.; Harikrishnan, R.; Song, S.K. 2020. Probiotics, lactic acid bacteria and bacilli: interesting supplementation for aquaculture. Journal of Applied Microbiology, 129(1): 116-136. https://doi.org/10.1111/jam.14628.

Sánchez-Ortiz A.C.; Angulo C.; Luna-González A.; Álvarez-Ruiz P.; Mazón-Suástegui J.M.; Campa-Córdova Á.I. 2016. Effect of mixed-Bacillus spp. isolated from pustulose ark Anadara tuberculosa on growth, survival, viral prevalence and immune-related gene expression in shrimp Litopenaeus vannamei. Fish & Shellfish Immunoly, 59: 95-102. https://doi.org/10.1016/j.fsi.2016.10.022.

Schveitzer, R.; Arantes, R.; Costódio, P.F.S.; do Espí­­rito Santo, C.M.; Arana, L.V.; Seiffert, W.Q.; Andreatta, E.R. 2013. Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquacultural Engineering, 56: 59-70. https://doi.org/10.1016/j.aquaeng.2013.04.006.

Skjermo, J.; Vadstein, O. 1999. Techniques for microbial control in the intensiverearing of marine larvae. Aquaculture, 177(1-4): 333-343. https://doi.org/10.1016/S0044-8486(99)00096-4.

Soltani, M.; Ghosh, K.; Hoseinifar, S.H.; Kumar, V.; Lymbery, A.J.; Roy, S.; Ringí­¸, E., 2019. Genus Bacillus, promising probiotics in aquaculture: Aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Reviews in Fisheries Science & Aquaculture, 27(3): 331-379. https://doi.org/10.1080/23308249.2019.1597010.

Timmerman, H.M.; Koning, C.J.M.; Mulder, L.; Rombouts, F.M.; Beynen, A.C. 2004. Monostrain, multistrain and multispecies probioticsâ€"a comparison of functionality and efficacy. International Journal of Food Microbiology, 96(3): 219-233. https://doi.org/10.1016/j.ijfoodmicro.2004.05.012.

Uddin, G.M.; Larsen, M.H.; Christensen, H.; Aarestrup, F.M.; Phu, T.M.; Dalsgaard, A. 2015. Identification and antimicrobial resistance of bacteria isolated from probiotic products used in shrimp culture. PLoS One, 10(7): e0132338. https://doi.org/10.1371/journal.pone.0132338.

Van Wyk, P.; Scarpa, J., 1999. Water Quality Requirements and Management. In: Van Wyk, P.; Davis-Hodgkins, M.; Laramore, R.; Main, K.L.; Mountain, J.; Scarpa, J. (eds.). Farming marine shrimp in recirculating freshwater systems. Tallahassee: Florida Department of Agriculture and Consumer Services. pp.141-162.

Vargas-Albores, F.; Porchas-Cornejo, M.A.; Martí­­nez-Porchas, M.; Villalpando-Canchola, E.; Gollas-Galván, T.; Martí­­nez-Córdova, L.R. 2017. Bacterial biota of shrimp intestine is significantly modified by the use of a probiotic mixture: a high throughput sequencing approach. Helgoland Marine Research, 71(1): 1-10. https://doi.org/10.1186/s10152-017-0485-z.

Verschuere, L.; Rombaut, G.; Sorgeloos, P.; Verstraete, W. 2020. Probiotics bacteria as biological control agents in aquaculture Microbiology and Molecular Biology Reviews, 64(4): 655-671. https://doi.org/10.1128/MMBR.64.4.655-671.2000.

Vieira, F.D.; Buglione Neto, C.C.; Mourino, J.L.P.; Jatobá, A.; Ramirez, C.; Martins, M.L.; Barracco, M.A.A.M.; Vinatea, L.A. 2008. Time-related action of Lactobacillus plantarum in the bacterial microbiota of shrimp digestive tract and its action as immunostimulant. Pesquisa Agropecuária Brasileira, 43(6): 763-769. https://doi.org/10.1590/S0100-204X2008000600013.

Vieira, F.N.; Buglione C.C.; Mourií­±o, J.P.L.; Jatobá, A.; Martins, M.L.; Schleder, D.D.; Andreatta, E.R; Barraco, M.A.; Vinatea, L.A. 2010. Effect of probiotic supplemented diet on marine shrimp survival after challenge with Vibrio harveyi. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 62(3): 631-638. https://doi.org/10.1590/S0102-09352010000300019.

Wang, Y.; Al Farraj, D.A.; Vijayaraghavan, P.; Hatamleh, A.A.; Biji, G.D.; Rady, A.M. 2020. Host associated mixed probiotic bacteria induced digestive enzymes in the gut of tiger shrimp Penaeus monodon. Saudi Journal of Biological Sciences, 27(9): 2479-2484. https://doi.org/10.1016/j.sjbs.2020.07.010.

Wang, Y.C.; Hu, S.Y.; Chiu, C.S.; Liu, C.H. 2019. Multiple-strain probiotics appear to be more effective in improving the growth performance and health status of white shrimp, Litopenaeus vannamei, than single probiotic strains. Fish & Shellfish Immunology, 84: 1050-1058. https://doi.org/10.1016/j.fsi.2018.11.017.

Wasielesky Jr, W.; Atwood, H.; Stokes, A.; Browdy, C.L. 2006. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, 258(1-4): 396-403. https://doi.org/10.1016/j.aquaculture.2006.04.030.

Won, S.; Hamidoghli, A.; Choi, W.; Bae, J.; Jang, W.J.; Lee, S.; Bai, S.C. 2020. Evaluation of potential probiotics Bacillus subtilis WB60, Pediococcus pentosaceus, and Lactococcus lactis on growth performance, immune response, gut histology and immune-related genes in whiteleg shrimp, Litopenaeus vannamei. Microorganisms, 8(2): 281. https://doi.org/10.3390/microorganisms8020281.

Xie, J.J.; Liu, Q.Q.; Liao, S.; Fang, H.H.; Yin, P.; Xie, S.W.; Tian, L.X.; Liu, Y.J.; Niu, J. 2019. Effects of dietary mixed probiotics on growth, non-specific immunity, intestinal morphology and microbiota of juvenile pacific white shrimp, Litopenaeus vannamei. Fish & Shellfish Immunology, 90: 456-465. https://doi.org/10.1016/j.fsi.2019.04.301.

Zheng, X.; Duan, Y.; Dong, H.; Zhang, J. 2017. Effects of dietary Lactobacillus plantarum in different treatments on growth performance and immune gene expression of white shrimp Litopenaeus vannamei under normal condition and stress of acute low salinity. Fish & Shellfish Immunology, 62: 195-201. https://doi.org/10.1016/j.fsi.2017.01.015.

Zuo, Z.H.; Shang, B.J.; Shao, Y.C.; Li, W.Y.; Sun, J.S. 2019. Screening of intestinal probiotics and the effects of feeding probiotics on the growth, immune, digestive enzyme activity and intestinal flora of Litopenaeus vannamei. Fish & Shellfish Immunology, 86: 160-168. https://doi.org/10.1016/j.fsi.2018.11.003.

Downloads

Published

2021-09-13

Issue

Section

Scientific Article

Most read articles by the same author(s)

<< < 1 2 3 > >>