Bacillus improves the health and growth performance of Penaeus vannamei in an intensive nursery without water exchange

Authors

DOI:

https://doi.org/10.20950/1678-2305/bip.2024.50.e908

Keywords:

Shrimp farming, Water quality, Organic matter, Bacillus spp., Growth performance

Abstract

The objective of this study was to investigate the effect of a bioremediator on the production of juveniles (Penaeus vannamei) in intensive nursery systems, on the zootechnical performance, water quality and health status of the animals. Two groups were used (control and bioremediation). In the treatment with bioremediator, 0.1g.m⁻³ of the product Arkhon Aqua® (Bacillus subtilis, B. licheniformes, B. amyloliquefaciens, B. megaterium) was applied daily, at concentrations of 1.0 x 10⁻¹¹ UFC.g⁻¹). The physical-chemical parameters of the water were monitored; health status, through presumptive analyzes evaluating the shape and filling of the hepatopancreas tubules and the prevalence of dirt on the gills and quantified Vibrios spp. and total heterotrophic bacteria in water and juveniles. The bioremediator provided a significant reduction in the volume of total dissolved solids (36.9%), settleable solids (68.9%) and the presence of organic matter in the gills (50.0%), in addition to showing an increase in the final mean weight (28.3%) and yield (20.0%), in addition to reducing feed conversion (18.7%) than control group. The bioremediation demonstrated a higher concentration of Vibrios spp. in water, however, it did not influence the concentration of Vibrios spp. in juveniles. It is concluded that the bioremediator improved the culture water, consequently enhancing the zootechnical performance of the shrimp.

References

Alves Neto, I., Brandão, H., Furtado, P. S., & Wasielesky Jr., W. (2019). Acute toxicity of nitrate in Litopenaeus vannamei juveniles at low salinity levels. Ciência Rural, 49(1), e20180439. https://doi.org/10.1590/0103-8478cr20180439

American Public Health Association (APHA) (1995). Standad methods for examination of water and wastewater. 19th ed. American Public Health Association.

Amiin, M. K., Lahay, A. F., Putriani, R. B., Reza, M., Putri, S. M. E., Sumon, M. A. A., Jamal, M. T., & Santanumurti, M. B. (2023). The role of probiotics in vannamei shrimp aquaculture performance: A review. Veterinary World, 16(3), 638-649. https://doi.org/10.14202/vetworld.2023.638-649

Amin, M., Rakhisi, Z., & Zarei Ahmady, A. (2015). Isolation and Identification of i Bacillus i Species From Soil and Evaluation of Their Antibacterial Properties. Avicenna Journal of Clinical Microbiology and Infection, 2(1), 23233. https://doi.org/10.17795/ajcmi-23233

Amoah, K., Huang, Q. C., Tan, B. P., Zhang, S., Chi, S. Y., Yang, Q. H., Liu, H.Y., & Dong, X.H. (2019). Dietary supplementation of probiotic Bacillus coagulans ATCC 7050, improves the growth performance, intestinal morphology, microflora, immune response, and disease confrontation of Pacific white shrimp, Litopenaeus vannamei. Fish & Shellfish Immunology, 87, 796-808. https://doi.org/10.1016/j.fsi.2019.02.029

Anggraini, S. I., Arfiati, D., & Nursyam, H. (2019). Effectiveness of Bacillus subtilis bacteria as a total organic matter reducer in catfish pond (Clarias gariepinus) cultivation. International Journal of Biotech Trends and Technology, 9(2), 7-10. https://doi.org/10.14445/22490183/IJBTT-V9I2P602

Arias-Moscoso, J. L., Espinoza-Barrón, L. G., Miranda-Baeza, A., Rivas-Vega, M. E., & Nieves-Soto, M. (2018). Effect of commercial probiotics addition in a biofloc shrimp farm during the nursery phase in zezo water exchange. Aquaculture Reports, 11, 47-52. https://doi.org/10.1016/j.aqrep.2018.06.001

Avnimelech, Y. (2007). Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264(1-4), 140-147. https://doi.org/10.1016/j.aquaculture.2006.11.025

Barman, P., Bandyopadhyay, P., Kati, A., Paul, T., Mandal, A. K., Mondal, K. C., & Mohapatra, P. K. D. (2018). Characterization and Strain Improvement of Aerobic Denitrifying EPS Producing Bacterium Bacillus cereus PB88 for Shrimp Water Quality Management. Waste and Biomass Valorization, 9(8), 1319-1330. https://doi.org/10.1007/s12649-017-9912-2

Boyd, C. (2001). Manejo na qualidade de agua na aquicultura e no cultivo de camarão marinho. Associação Brasileira de Criadores de Camarão.

Boyd, C. E., Tucker, C. S., & Viriyatum, R. (2011). Interpretation of pH, Acidity, and Alkalinity in Aquaculture and Fisheries. North American Journal of Aquaculture, 73(4), 403-408. https://doi.org/10.1080/15222055.2011.620861

Burford, M. A., Thompson, P. J., McIntosh, R. P., Bauman, R. H., & Pearson, D. C. (2003). Nutrient and microbial dynamics in high-intensity, zero-exchange shrimp ponds in Belize. Aquaculture, 219(1-4), 393-411. https://doi.org/10.1016/s0044-8486(02)00575-6

Carbajal-Hernández, J. J., Sánchez-Fernández, L. P., Carrasco-Ochoa, J. A., & Martínez-Trinidad, J. F. (2012). Immediate water quality assessment in shrimp culture using fuzzy inference systems. Expert Systems with Applications, 39(12), 10571-10582. https://doi.org/10.1016/j.eswa.2012.02.141

Chen, X. H., Zeng, D. G., Chen, X. L., Xie, D. X., Zhao, Y. Z., Yang, C. L., & Wang, H. (2013). Transcriptome Analysis of Litopenaeus vannamei in Response to White Spot Syndrome Virus Infection. Plos One, 8(8), e73218. https://doi.org/10.1371/journal.pone.0073218

Chien, C. C., Lin, T. Y., Chi, C. C., & Liu, C. H. (2020). Probiotic, Bacillus subtilis E20 alters the immunity of white shrimp, Litopenaeus vannamei via glutamine metabolism and hexosamine biosynthetic pathway. Fish & Shellfish Immunology, 98, 176-185. https://doi.org/10.1016/j.fsi.2020.01.014

Dayal, J. S., Ponniah, A., Khan, H. I., Babu, E. M., Ambasankar, K., & Vasagam, K. K. (2013). Shrimps–a nutritional perspective. Current Science, 104(11), 1487-1491.

Edwards, P. (2015). Aquaculture environment interactions: Past, present and likely future trends. Aquaculture, 447, 2-14. https://doi.org/10.1016/j.aquaculture.2015.02.001

Eissa, N., Wang, H. P., Yao, H., & Abou-Elgheit, E. (2018). Mixed Bacillus Species Enhance the Innate Immune Response and Stress Tolerance in Yellow Perch Subjected to Hypoxia and Air-Exposure Stress. Scientific Reports, 8(1), 6981. https://doi.org/10.1038/s41598-018-25269-z

El-Kady, A. A., Magouz, F. I., Mahmoud, S. A., & Abdel-Rahim, M. M. (2022). The effects of some commercial probiotics as water additive on water quality, fish performance, blood biochemical parameters, expression of growth and immune-related genes, and histology of Nile tilapia (Oreochromis niloticus). Aquaculture, 546, 737249. https://doi.org/10.1016/j.aquaculture.2021.737249

Emerenciano, M. G. C., Martínez-Córdova, L. R., Martínez-Porchas, M., & Miranda-Baeza, A. (2017). Biofloc technology (BFT): a tool for water quality management in aquaculture. Water Quality, 5, 92-109. https://doi.org/10.5772/66416

Food and Agriculture Organization (FAO). (2022). The State of World Fisheries and Aquaculture 2022: Towards Blue Transformation. FAO. https://doi.org/10.4060/cc0461en

Hasan, K. N., & Banerjee, G. (2020). Recent studies on probiotics as beneficial mediator in aquaculture: a review. Journal of Basic and Applied Zoology, 81(1), 53. https://doi.org/10.1186/s41936-020-00190-y

Hassan, M. A., Fathallah, M. A., Elzoghby, M. A., Salem, M. G., & Helmy, M. S. (2022). Influence of probiotics on water quality in intensified Litopenaeus vannamei ponds under minimum-water exchange. AMB Express, 12(1), 22. https://doi.org/10.1186/s13568-022-01370-5

Hlordzi, V., Kuebutornye, F. K. A., Afriyie, G., Abarike, E. D., Lu, Y., Chi, S., & Anokyewaa, M. A. (2020). The use of Bacillus species in maintenance of water quality in aquaculture: A review. Aquaculture Reports, 18, 100503. https://doi.org/10.1016/j.aqrep.2020.100503

Hoseinifar, S. H., Sun, Y. Z., Wang, A. R., & Zhou, Z. G. (2018). Probiotics as Means of Diseases Control in Aquaculture, a Review of Current Knowledge and Future Perspectives. Frontiers in Microbiology, 9, 2429. https://doi.org/10.3389/fmicb.2018.02429

Janeo, R. L., Corre, V. L., & Sakata, T. (2009). Water quality and phytoplankton stability in response to application frequency of bioaugmentation agent in shrimp ponds. Aquacultural Engineering, 40(3), 120-125. https://doi.org/10.1016/j.aquaeng.2009.01.001

Jasmin, M. Y., Syukri, F., Kamarudin, M. S., & Karim, M. (2020). Potential of bioremediation in treating aquaculture sludge: Review article. Aquaculture, 519, 734905. https://doi.org/10.1016/j.aquaculture.2019.734905

Jatobá, A., Borges, Y. V., & Silva, F. A. (2019). Biofloc: sustainable alternative for water use in fish culture. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 71(3), 1076-1080. https://doi.org/10.1590/1678-4162-10309

Jatobá, A., do Nascimento Vieira, F., Silva, B. C., Mouriño, J. L. P., & Seiffert, W. Q. (2015). Influência da renovação e inclusão de naúplio de tanques em laboratório de camarões marinhos (Litopnaeus vannamei). Brazilian Journal of Aquatic Science and Technology, 19(1), 77-80. https://doi.org/10.14210/bjast.v19n1.1984

Kord, M. I., Maulu, S., Srour, T. M., Omar, E. A., Farag, A. A., Nour, A. A. M., Hasimuna, O. J., Abdel-Tawwab, M., & Khalil, H. S. (2022). Impacts of water additives on water quality, production efficiency, intestinal morphology, gut microbiota, and immunological responses of Nile tilapia fingerlings under a zero-water-exchange system. Aquaculture, 547, 737503. https://doi.org/10.1016/j.aquaculture.2021.737503

Kuebutornye, F. K. A., Abarike, E. D., & Lu, Y. (2019). A review on the application of Bacillus as probiotics in aquaculture. Fish & Shellfish Immunology, 87, 820-828. https://doi.org/10.1016/j.fsi.2019.02.010

Lin, Y. C., & Chen, J. C. (2001). Acute toxicity of ammonia on Litopenaeus vannamei Boone juveniles at different salinity levels. Journal of Experimental Marine Biology and Ecology, 259(1), 109-119. https://doi.org/10.1016/S0022-0981(01)00227-1

Lin, Y. C., & Chen, J. C. (2003). Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture, 224(1-4), 193-201. https://doi.org/10.1016/S0044-8486(03)00220-5

Morales, V., & Cuéllar-Anjel, J. (eds.). (2014). Guía Técnica: Patología e Inmunología de Camarones Penaeidos (2ª ed.). OIRSA.

Mota, V. L. R., Adolfo, J., & Silva, L. R. (2021). Caracterização da produção de Tilápia-do-Nilo Oreochromis niloticus em diferentes sistemas de cultivo no Sul de Santa Catarina. Revista em Agronegócio e Meio Ambiente, 14(2), 455-468. https://doi.org/10.17765/2176-9168.2021v14n2e7906

Natnan, M., Mayalvanan, Y., Jazamuddin, F., Aizat, W., Low, C.- F., Goh, H.-H., Azizan, K. A., Bunawan, H., & Baharum, S. (2021). Omics Strategies in Current Advancements of Infectious Fish Disease Management. Biology, 10(11), 1086. https://doi.org/10.3390/biology10111086

Patil, P. K., Antony, L., Avunje, S., Viswanathan, B., Lalitha, N., Jangam, A. K., Kumar, D., Solanki, H. G., Reddy, M. A., Alavandi, S. V., & Vijayan, K. K. (2021). Bioaugmentation with nitrifying and denitrifying microbial consortia for mitigation of nitrogenous metabolites in shrimp ponds. Aquaculture, 541,736819. https://doi.org/10.1016/j.aquaculture.2021.736819

Ray, A. J., Lewis, B. L., Browdy, C. L., & Leffler, J. W. (2010). Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant-based feed in minimal-exchange, superintensive culture systems. Aquaculture, 299(1-4), 89-98. https://doi.org/10.1016/j.aquaculture.2009.11.021

Samocha, T. M., Patnaik, S., Speed, M., Ali, A.-M., Burger, J. M., Almeida, R. V., Ayub, Z., Harisanto, M., Horowitz, A., & Brock, D. L. (2007). Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacultural Engineering, 36(2), 184-191. https://doi.org/10.1016/j.aquaeng.2006.10.004

Schveitzer, R., Arantes, R., Costodio, P. F. S., Santo, C. M. D., Arana, L. V., Seiffert, W. Q., & Andreatta, E. R. (2013). Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquacultural Engineering, 56, 59-70. https://doi.org/10.1016/j.aquaeng.2013.04.006

Sharma, I. (2020). Bioremediation Techniques for Polluted Environment: Concept, Advantages, Limitations, and Prospects. In Murillo-Tovar, M., Saldarriaga-Noreña, H., & Saeid, A. (eds.). Trace Metals in the Environment - New Approaches and Recent Advances. IntechOpen. https://doi.org/10.5772/intechopen.90453

Soaudy, M. R., Ghonimy, A., Greco, L. S. L., Chen, Z., Dyzenchauz, A., & Li, J. (2023). Total suspended solids and their impact in a biofloc system: Current and potentially new management strategies. Aquaculture, 572, 739524. https://doi.org/10.1016/j.aquaculture.2023.739524

Suantika, G., Situmorang, M. L., Kurniawan, J. B., Pratiwi, S. A., Aditiawati, P., Astuti, D. I., Azizah, F. F. N., Djohan, Y. A., Zuhri, U., & Simatupang, T. M. (2018). Development of a zero water discharge (ZWD)—Recirculating aquaculture system (RAS) hybrid system for super intensive white shrimp (Litopenaeus vannamei) culture under low salinity conditions and its industrial trial in commercial shrimp urban farming in Gresik, East Java, Indonesia. Aquacultural Engineering, 82, 12-24. https://doi.org/10.1016/j.aquaeng.2018.04.002

Telli, G. S., Ranzani-Paiva, M. J. T., Dias, D. C., Sussel, F. R., Ishikawa, C. M., & Tachibana, L. (2014). Dietary administration of Bacillus subtilis on hematology and nonspecific immunity of Nile tilapia Oreochromis niloticus raised at different stocking densities. Fish & Shellfish Immunology, 39(2), 305-311. https://doi.org/10.1016/j.fsi.2014.05.025

Vinatea, L. (2010). Qualidade da água em aquicultura: princípios e práticas (3ª ed.). Universidade Federal de Santa Catarina.

Vinatea, L., Galvez, A. O., Browdy, C. L., Stokes, A., Venero, J., Haveman, J., Leffler, J. W. (2010). Photosynthesis, water respiration and growth performance of Litopenaeus vannamei in a super-intensive raceway culture with zero water exchange: Interaction of water quality variables. Aquacultural Engineering, 42(1), 17-24. https://doi.org/10.1016/j.aquaeng.2009.09.001

Xie, J. J., Liu, Q. Q., Liao, S., Fang, H. H., Yin, P., Xie, S. W., Tian, L. X., Liu, Y J., & Niu, J. (2019). Effects of dietary mixed probiotics on growth, non-specific immunity, intestinal morphology and microbiota of juvenile pacific white shrimp, Litopenaeus vannamei. Fish & Shellfish Immunology, 90, 456-465. https://doi.org/10.1016/j.fsi.2019.04.301

Zar, J. H. (2010). Biostatistical analysis (5ª ed.). Pearson Prentice Hall.

Zhao, S., Hu, N., Chen, Z., Zhao, B., & Liang, Y. (2009). Bioremediation of Reclaimed Wastewater Used as Landscape Water by Using the Denitrifying Bacterium Bacillus cereus. Bulletin of Environmental Contamination and Toxicology, 83(3), 337-340. https://doi.org/10.1007/s00128-009-9684-x

Zhou, X., Tian, Z., Wang, Y., & Li, W. (2010). Effect of treatment with probiotics as water additives on tilapia (Oreochromis niloticus) growth performance and immune response. Fish Physiology and Biochemistry, 36(3), 501-509. https://doi.org/10.1007/s10695-009-9320-z

Zorriehzahra, M. J., Delshad, S. T., Adel, M., Tiwari, R., Karthik, K., Dhama, K., & Lazado, C. C. (2016). Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review. Veterinary Quarterly, 36(4), 228-241. https://doi.org/10.1080/01652176.2016.1172132

Downloads

Published

2024-09-25

Issue

Section

Scientific Article

Most read articles by the same author(s)