Effect of protein source and probiotic on the intestinal tract of pacific white shrimp Litopenaeus vannamei

Authors

  • Adolfo JATOBÁ Instituto Federal Catarinense -  IFC, Laboratório de Aquicultura http://orcid.org/0000-0002-9470-4775
  • Klayton Natan MORAES Instituto Federal Catarinense -  IFC, Laboratório de Aquicultura
  • Jorge Pedro RODRIGUES-SOARES Instituto Federal Catarinense -  IFC, Laboratório de Aquicultura
  • Gabriel Fernandes Alves JESUS Universidade Federal de Santa Catarina -  UFSC, Departamento de Aquicultura, Laboratório de Camarí­µes Marinhos http://orcid.org/0000-0003-0594-3529
  • Felipe Do Nascimento VIEIRA Universidade Federal de Santa Catarina -  UFSC, Departamento de Aquicultura, Laboratório de Camarí­µes Marinhos

DOI:

https://doi.org/10.20950/1678-2305.2018.44.4.371

Keywords:

Litopenaeus vannamei, nutrition, microbiota, lactic acid bacteria

Abstract

This study aimed to evaluate the viability of supplementing two diets for the shrimp Litopenaeus vannamei with Lactobacillus plantarum. One using fish meal as a protein source and another using soy protein concentrate, as well as the effect of these formulations on shrimp intestinal microbiota. To assay probiotic viability in the formulated diets, the number of CFU g-1 was observed weekly over the course of four weeks. The viability of Lactobacillus plantarum in relation to the physical parameters of the diets, including stability, buoyancy, and expansion, was quantified. The effect of the diets on microbiota and intestinal tract morphology was determined by performing a 2x2 factorial experiment (two diets, with or without supplementation) in triplicate, totaling 12 experimental units, with five animals per unit, fed with 3.5% of biomass for 17 days. The concentration of lactic acid bacteria decreased over time, irrespective of protein source. The diet with fishmeal as a protein source, independent of probiotic supplementation, presented good stability and did not disintegrate after four hours. In contrast, the diet with soy protein concentrate, supplemented or not, disintegrated between 2.5 and 3 hours, presenting low stability. All diets presented 0% buoyancy. The expansion rate was higher in diets with soy protein concentrate, but without the influence probiotic supplementation or interaction between the factors. In the in vivo assay, both supplemented diets showed greater total heterotrophic bacteria count than without probiotic; however, no difference in count was noted in diets with different protein source. Lactic acid bacteria were only observed in the shrimp fed diets supplemented with probiotic. Histology of the intestinal tract showed that all intestines had intact, well-developed and well-organized cells, irrespective of diet. Thus, L. plantarum, when combined with different protein sources, produced similar effects on the structure and microbiota of the marine shrimp Litopenaeus vannamei.

References

ABCC - Associação Brasileira de Criadores de Camarão. 2005 Código de Conduta e de Boas Práticas de Manejo e de Fabricação para uma Carcinicultura Ambientalmente Sustentável e Socialmente Justa. 1ª ed. Natal: ABCC. 86p. [online] URL: <http://abccam.com.br/site/wp-content/uploads/2011/02/Cdigos_de_Conduta_ABCC_2005.pdf>

BANSEMER, M.S.; FORDER, R.E.A.; HOWARTH, G.S.; SUITOR, G.M.; BOWYER, J.; STONE, D.A.J. 2015 The effect of dietary soybean meal and soy protein concentrate on the intestinal mucus layer and development of subacute enteritis in Yellowtail Kingfish (Seriola lalandi) at suboptimal water temperature. Aquaculture Nutrition, 21(3): 300-310.

BARBIERI, E.; MEDEIROS, A.M.Z.; HENRIQUES, MB. 2016 Oxygen consumption and ammonia excretion of juvenile pink shrimp (Farfantepenaeus paulensis) in culture: temperature effects. Marine and Freshwater Behaviour and Physiology , 49(1):19-25.

BELL, T.A.; LIGHTNER, D.V. 1988 A Handbook Of Normal Penaeid Shrimp Histology. World Aquaculture Society. 114p.

BOYD, C.E.; GAUTIER, D. 2000 Effluent composition and water quality standards. Global Aquaculture Alliance, 3(5): 61-66.

BUGLIONE, C.C.; PEDROTTI, F.; VIEIRA, F.N.; SEIFERT, W.Q.; MOURIí­"˜O, J.L.; MARTINS, M.L. 2008 Avaliação de bacterina e Lactobacillus plantarum frente í­Â  infecção experimental por Vibrio harveyi em pós-larvas de Litopenaeus vannamei. Brazilian Journal of Veterinary Research and Animal Science, 45(supl.): 40-45.

BUGLIONE-NETO, C.; MOURIí­"˜O, J.L.; VIEIRA, F.N.; SILVA, B.C; JATOBÁ, A.; SEIFFERT, W.; FRACALOSSI, D.M.; ANDREATTA, E. 2013 Métodos para determinação da digestibilidade aparente de dietas para camarão marinho suplementadas com probiótico. Pesquisa Agropecuária Brasileira, 48(8): 1021-1027.

CHAVEZ, N.N.G.; RAGAZA, J.A.; CORRE, V.L.; SERRANO, A.E.; TRAIFALGAR, R.F.M. 2016 Effects of water hyacinth (Eichhornia crassipes) leaf protein concentrate as soybean protein replacement in white shrimp Litopenaeus vannamei (Boone) postlarvae diet. Aquaculture Research, 47(8): 2642-2649.

CHIU, S.T.; WONG, S.L.; SHIU, Y.L.; CHIU, C.H.; GUEI, W.C.; LIU, C.H. 2016 Using a fermented mixture of soybean meal and earthworm meal to replace fish meal in the diet of white shrimp, Penaeus vannamei (Boone). Aquaculture Research, 47(11): 3489-3500.

CORREIA, E.S.; WILKENFELD, J.S.; MORRIS, T.C.; WEI, L.; PRANGNELL, D.I.; SAMOCHA, T.M. 2014 Intensive nursery production of the Pacific white shrimp Litopenaeus vannamei using two commercial feeds with high and low protein content in a biofloc-dominated system. Aquacultural Engineering, 59(1): 48-54.

FUCHS, R.H.B.; BORSATO, D.; BONA, E.; HAULY, M.C.O. 2005 "Iogurte” de soja suplementado com oligofrutose e inulina. Ciência e Tecnologia de Alimentos, 25(1): 175-181.

FULLER, R. (Ed.). 2012 Probiotics: the scientific basis. Springer Science & Business Media. 397p.

GAINZA, O., RAMÍREZ, C., RAMOS, A. S., & ROMERO, J. 2018 Intestinal Microbiota of White Shrimp Penaeus vannamei Under Intensive Cultivation Conditions in Ecuador. Microbial ecology, 75(3), 562-568.

GAMBOA-DELGADO, J.; FERNÁNDEZ-DÍAZ, B.; NIETO-LÓPEZ, M.; CRUZ-SUÁREZ, L.E. 2016 Nutritional contribution of torula yeast and fish meal to the growth of shrimp Litopenaeus vannamei as indicated by natural nitrogen stable isotopes. Aquaculture, 453: 116-121.

GATESOUPE, F.J. 1999 The use of probiotics in aquaculture. Aquaculture, 180(1): 147-165.

HOOVER, D.G.; STEENSON, L.R. (Ed.). 2014 Bacteriocins of lactic acid bacteria. Academic Press: San Diego. 298p.

HOWARD, D.W.; LEWIS, E.J.; KELLER, B.J.; SMITH, C.S. 2004 Histological techniques for marine bivalve mollusks and crustaceans. 2ª ed. Oxford: NOAA Technical Memorandum NOS NCCOS 5. 218p.

JATOBÁ, A.; PEREIRA, M.O.; VIEIRA, L.M.; BITENCOURT, M.; RODRIGUES, E.; FACHINI, F.E.; MORAES, A.V. 2018 Action time and feed frequency of Lactobacillus plantarum for Nile tilapia. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 70(1): 327-332.

JATOBÁ, A.; SILVA, B.C.; VIEIRA, F.N.; MOURIí­"˜O, J.L.P.; SEIFFERT, W.Q.; TOLEDO, T.M. 2014 Protein levels for Litopenaeus vannamei in semi-intensive and biofloc systems. Aquaculture, 432: 365-371.

JATOBÁ, A.; VIEIRA, F.N.; BUGLIONE-NETO, C.C.; MOURIí­"˜O, J.L.P.; SILVA, B.C.; SEIFTTER, W.Q.; ANDREATTA, E.R. 2011 Diet supplemented with probiotic for Nile tilapia in polyculture system with marine shrimp. Fish Physiology and Biochemistry, 37(4): 725-732.

JATOBÁ, A.; VIEIRA, F.N.; NETO, C.B.; SILVA, B.C.; MOURIí­"˜O, J.L.P.; JERÔNIMO, G.T.; DOTTA, G.; MARTINS, M.L. 2008 Utilização de bactérias ácido-lácticas isoladas do trato intestinal de tilápia-do-nilo como probiótico. Pesquisa Agropecuária Brasileira, 43(9): 1201-1207.

JATOBÁ, A.; VIEIRA, F.N.; SILVA, B.C.; MOURIí­"˜O, J.L.P.; SOARES, M.; SEIFFERT, W.Q. 2017 Replacement of fishmeal for soy protein concentrate in diets for juvenile Litopenaeus vannamei in biofloc-based rearing system. Revista Brasileira de Zootecnia, 46(9): 705-713.

KIM, Y.; ASHTON-ALCOX, K.A.; POWELL, E.N. 2006 Histological techniques for marine bivalve molluscs: update. Silver Spring: NOAA Technical Memorandum NOS NCCOS 27. 64p.

LEE, S.; KATYA, K.; PARK, Y.; WON, S.; SEONG, M.; BAI, S.C. 2017 Comparative evaluation of dietary probiotics Bacillus subtilis WB60 and Lactobacillus plantarum KCTC3928 on the growth performance, immunological parameters, gut morphology and disease resistance in Japanese eel, Anguilla japonica. Fish & Shellfish Immunology, 61: 201-210.

LIM, C.; DOMINY, W. 1990 Evaluation of soybean meal as a replacement for marine animal protein in diets for shrimp (Penaeus vannamei). Aquaculture, 87(1): 53-63.

LUIS-VILLASENOR, I.E.; CASTELLANOS-CERVANTES, T.; GOMEZ-GIL, B.; CARRILLO-GARCÍA, Á.E.; CAMPA-CÓRDOVA, A.I.; ASCENCIO, F. 2013 Probiotics in the intestinal tract of juvenile whiteleg shrimp Litopenaeus vannamei: modulation of the bacterial community. World Journal of Microbiology and Biotechnology, 29(2): 257-265.

MERRIFIELD, D.L.; BALCÁZAR, J.L.; DANIELS, C.; ZHOU, Z.; CARNEVALI, O.; SUN, Y.; HOSEINIFAR, S.H.; RINGí­Ëœ, E. 2014 Indigenous lactic acid bacteria in fish and crustaceans. Aquaculture Nutrition: Gut Health, Probiotics and Prebiotics, 128-168.

MOSS, S.M.; MOSS, D.R.; ARCE, S.M.; LIGHTNER, D.V.; LOTZ, J.M. 2012 The role of selective breeding and biosecurity in the prevention of disease in penaeid shrimp aquaculture. Journal of Invertebrate Pathology, 110(2): 247-250.

NAVINCHANDRAN, M.; IYAPPARAJ, P.; MOOVENDHAN, S.; RAMASUBBURAYAN, R.; PRAKASH, S.; IMMANUEL, G.; PALAVESAM, A. 2014 Influence of probiotic bacterium Bacillus cereus isolated from the gut of wild shrimp Penaeus monodon in turn as a potent growth promoter and immune enhancer in P. monodon. Fish & Shellfish Immunology, 36(1): 38-45.

NRC - National Research Council. 2011 Nutrient requirements of fish and shrimp. National academies press.
O'BRYAN, C.A.; CRANDALL, P.G.; RICKE, S.C.; NDAHETUYE, J.B.; TAYLOR, T.M. 2015 7-Lactic acid bacteria (LAB) as antimicrobials in food products: Analytical methods and applications. Handbook of Natural Antimicrobials for Food Safety and Quality, 15p.

SOARES, M.; FRACALOSSI, D.M.; FREITAS, L.E.L.D.; RODRIGUES, M.S.; REDIG, J.C.; MOURIí­"˜O, J.L.P.; SEIFFERT, W.Q.; VIEIRA, F.N. 2015 Replacement of fish meal by protein soybean concentrate in practical diets for Pacific white shrimp. Revista Brasileira de Zootecnia, 44(10): 343-349.

SOOKYING, D.; DAVIS, D.A.; SOLLER DIAS DA SILVA, F. 2013 A review of the development and application of soybean‐based diets for Pacific white shrimp Litopenaeus vannamei. Aquaculture Nutrition, 19(4): 441-448.

STANDEN, B.T.; RODILES, A.; PEGGS, D.L.; DAVIES, S.J.; SANTOS, G.A.; MERRIFIELD, D.L. 2015 Modulation of the intestinal microbiota and morphology of tilapia, Oreochromis niloticus, following the application of a multi-species probiotic. Applied Microbiology and Biotechnology, 99(20): 8403-8417.

SUN, H.; TANG, J.W.; YAO, X.H.; WU, Y.F.; WANG, X.; LIU, Y. 2016 Effects of replacement of fish meal with fermented cottonseed meal on growth performance, body composition and haemolymph indexes of Pacific white shrimp, Litopenaeus vannamei Boone, 1931. Aquaculture Research, 47(8): 2623-2632.

VAN HAI, N. 2015 Research findings from the use of probiotics in tilapia aquaculture: a review. Fish & Shellfish Immunology, 45(2): 592-597.

VIEIRA, F.N. BUGLIONE, C.C.; MOURIí­"˜O, J.P.L.; JATOBÁ, A.; MARTINS, M.L.; SCHLEDER, D.D.; ANDREATTA, E.R.; BARRACO, M.A.; VINATEA, L.A. 2010 Effect of probiotic supplemented diet on marine shrimp survival after challenge with Vibrio harveyi. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 62(3): 631-638.

VIEIRA, F.N.; JATOBÁ, A.; MOURIí­"˜O, J.L.P.; BUGLIONE NETO, C.C.; SILVA, J.S.D.; SEIFFERT, W.Q.; SOARES, M.; VINATEA, L.A. 2016 Use of probiotic-supplemented diet on a Pacific white shrimp farm. Revista Brasileira de Zootecnia, 45(5): 203-207.

VIEIRA, F.N.; JATOBÁ, A.; MOURIí­"˜O, J.L.P.; VIEIRA, E.A.; SOARES, M.; SILVA, B.C.; SEIFFERT, W.Q.; MARTINS, M.L.; VINATEA, L.A. 2013 In vitro selection of bacteria with potential for use as probiotics in marine shrimp culture. Pesquisa Agropecuária Brasileira, 48(8): 998-1004.

VIEIRA, F.N.; NETO, C.C.B.; MOURIí­"˜O, J.L.P.; JATOBÁ, A.; RAMIREZ, C.; MARTINS, M.L.; BARRACCO, M.A.A.M.; VINATEA, L.A. 2008 Time-related action of Lactobacillus plantarum in the bacterial microbiota of shrimp digestive tract and its action as immunostimulant. Pesquisa Agropecuária Brasileira, 43(6): 763-769.

VIEIRA, F.N.; PEDROTTI, F.S.; NETO, C.C.B.; MOURIí­"˜O, J.L.P.; BELTRAME, E.; MARTINS, M.L.; RAMIREZ, C.; ARANA, L.A.V. 2007 Lactic-acid bacteria increase the survival of marine shrimp, Litopenaeus vannamei, after infection with Vibrio harveyi. Brazilian Journal of Oceanography, 55(4): 251-255.

WANG, X.; LI, E.; XU, C.; QIN, J.G.; WANG, S.; CHEN, X.; CAI, Y.; CHEN, K.; GAN, L.; YU, N.; DU, Z.; CHEN, L. 2016 Growth, body composition, ammonia tolerance and hepatopancreas histology of white shrimp Litopenaeus vannamei fed diets containing different carbohydrate sources at low salinity. Aquaculture Research, 47(6): 1932-1943.

ZAR, J.H. 2010 Biostatistical analysis. 5ª ed. Pearson Prentice Hall: Upper Saddle River. 994p.

ZHANG, Q.; TAN, B.; MAI, K.; ZHANG, W.; MA, H.; AI, Q.; WANG, X.; LIUFU, Z. 2011 Dietary administration of Bacillus (B. licheniformis and B. subtilis) and isomaltooligosaccharide influences the intestinal microflora, immunological parameters and resistance against Vibrio alginolyticus in shrimp, Penaeus japonicus (Decapoda: Penaeidae). Aquaculture Research, 42(7): 943-952.

ZHAO, L.; WANG, W.; HUANG, X.; GUO, T.; WEN, W.; FENG, L.; WEI, L. 2017 The effect of replacement of fish meal by yeast extract on the digestibility, growth and muscle composition of the shrimp Litopenaeus vannamei. Aquaculture Research, 48(1): 311-320.

ZOKAEIFAR, H.; BALCÁZAR, J.L.; SAAD, C.R.; KAMARUDIN, M.S.; SIJAM, K.; ARSHAD, A.; NEJAT, N. 2012 Effects of Bacillus subtilis on the growth performance, digestive enzymes, immune gene expression and disease resistance of white shrimp, Litopenaeus vannamei. Fish & Shellfish Immunology, 33(4): 683-689.

Downloads

Published

2018-12-26

Most read articles by the same author(s)

1 2 3 > >>