Bacillus na melhoria do desempenho de crescimento e saúde de Penaeus vannamei em berçário intensivo sem troca de água
DOI:
https://doi.org/10.20950/1678-2305/bip.2024.50.e908Palavras-chave:
Carcinicultura, Qualidade de água, Matéria orgânica, Bacillus spp., Desempenho de crescimentoResumo
O objetivo deste estudo foi investigar o efeito de um biorremediador na produção de juvenis (Penaeus vannamei) em sistemas de berçários intensivos, sobre o desempenho zootécnico, qualidade de água e status de saúde dos animais. Dois grupos foram utilizados (controle e biorremediador). No tratamento com biorremediador foi aplicado diariamente 0,1g.m⁻³ do produto Arkhon Aqua® (Bacillus subtilis, B. licheniformes, B. amyloliquefaciens, B. megaterium, nas concentrações de 1,0 x 10⁻¹¹ UFC.g⁻¹). Foram monitorados os parâmetros físico-químicos da água; status de saúde, através das análises presuntivas avaliando o formato e preenchimento dos túbulos do hepatopâncreas e prevalência de sujidades nas brânquias e quantificados os Vibrios spp. e bactérias heterotróficas totais na água e juvenis. O biorremediador proporcionou uma redução significativa no volume de sólidos dissolvidos totais (36,9%), sólidos sedimentáveis (68,9%) e na presença de matéria orgânica nas brânquias (50,0%), além de apresentarem incremento no peso médio final (28,3%) e produtividade (20,0%), além de reduzir a conversão alimentar (18,7%) comparado ao grupo controle. O tratamento biorremediador demostrou maior concentração de Vibrios spp. na água, porém, não influenciou na concentração de Vibrios spp. nos juvenis. Conclui-se que o biorremediador melhorou o ambiente de cultivo, consequentemente potencializando o desempenho zootécnico dos camarões.
Referências
Alves Neto, I., Brandão, H., Furtado, P. S., & Wasielesky Jr., W. (2019). Acute toxicity of nitrate in Litopenaeus vannamei juveniles at low salinity levels. Ciência Rural, 49(1), e20180439. https://doi.org/10.1590/0103-8478cr20180439
American Public Health Association (APHA) (1995). Standad methods for examination of water and wastewater. 19th ed. American Public Health Association.
Amiin, M. K., Lahay, A. F., Putriani, R. B., Reza, M., Putri, S. M. E., Sumon, M. A. A., Jamal, M. T., & Santanumurti, M. B. (2023). The role of probiotics in vannamei shrimp aquaculture performance: A review. Veterinary World, 16(3), 638-649. https://doi.org/10.14202/vetworld.2023.638-649
Amin, M., Rakhisi, Z., & Zarei Ahmady, A. (2015). Isolation and Identification of i Bacillus i Species From Soil and Evaluation of Their Antibacterial Properties. Avicenna Journal of Clinical Microbiology and Infection, 2(1), 23233. https://doi.org/10.17795/ajcmi-23233
Amoah, K., Huang, Q. C., Tan, B. P., Zhang, S., Chi, S. Y., Yang, Q. H., Liu, H.Y., & Dong, X.H. (2019). Dietary supplementation of probiotic Bacillus coagulans ATCC 7050, improves the growth performance, intestinal morphology, microflora, immune response, and disease confrontation of Pacific white shrimp, Litopenaeus vannamei. Fish & Shellfish Immunology, 87, 796-808. https://doi.org/10.1016/j.fsi.2019.02.029
Anggraini, S. I., Arfiati, D., & Nursyam, H. (2019). Effectiveness of Bacillus subtilis bacteria as a total organic matter reducer in catfish pond (Clarias gariepinus) cultivation. International Journal of Biotech Trends and Technology, 9(2), 7-10. https://doi.org/10.14445/22490183/IJBTT-V9I2P602
Arias-Moscoso, J. L., Espinoza-Barrón, L. G., Miranda-Baeza, A., Rivas-Vega, M. E., & Nieves-Soto, M. (2018). Effect of commercial probiotics addition in a biofloc shrimp farm during the nursery phase in zezo water exchange. Aquaculture Reports, 11, 47-52. https://doi.org/10.1016/j.aqrep.2018.06.001
Avnimelech, Y. (2007). Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264(1-4), 140-147. https://doi.org/10.1016/j.aquaculture.2006.11.025
Barman, P., Bandyopadhyay, P., Kati, A., Paul, T., Mandal, A. K., Mondal, K. C., & Mohapatra, P. K. D. (2018). Characterization and Strain Improvement of Aerobic Denitrifying EPS Producing Bacterium Bacillus cereus PB88 for Shrimp Water Quality Management. Waste and Biomass Valorization, 9(8), 1319-1330. https://doi.org/10.1007/s12649-017-9912-2
Boyd, C. (2001). Manejo na qualidade de agua na aquicultura e no cultivo de camarão marinho. Associação Brasileira de Criadores de Camarão.
Boyd, C. E., Tucker, C. S., & Viriyatum, R. (2011). Interpretation of pH, Acidity, and Alkalinity in Aquaculture and Fisheries. North American Journal of Aquaculture, 73(4), 403-408. https://doi.org/10.1080/15222055.2011.620861
Burford, M. A., Thompson, P. J., McIntosh, R. P., Bauman, R. H., & Pearson, D. C. (2003). Nutrient and microbial dynamics in high-intensity, zero-exchange shrimp ponds in Belize. Aquaculture, 219(1-4), 393-411. https://doi.org/10.1016/s0044-8486(02)00575-6
Carbajal-Hernández, J. J., Sánchez-Fernández, L. P., Carrasco-Ochoa, J. A., & Martínez-Trinidad, J. F. (2012). Immediate water quality assessment in shrimp culture using fuzzy inference systems. Expert Systems with Applications, 39(12), 10571-10582. https://doi.org/10.1016/j.eswa.2012.02.141
Chen, X. H., Zeng, D. G., Chen, X. L., Xie, D. X., Zhao, Y. Z., Yang, C. L., & Wang, H. (2013). Transcriptome Analysis of Litopenaeus vannamei in Response to White Spot Syndrome Virus Infection. Plos One, 8(8), e73218. https://doi.org/10.1371/journal.pone.0073218
Chien, C. C., Lin, T. Y., Chi, C. C., & Liu, C. H. (2020). Probiotic, Bacillus subtilis E20 alters the immunity of white shrimp, Litopenaeus vannamei via glutamine metabolism and hexosamine biosynthetic pathway. Fish & Shellfish Immunology, 98, 176-185. https://doi.org/10.1016/j.fsi.2020.01.014
Dayal, J. S., Ponniah, A., Khan, H. I., Babu, E. M., Ambasankar, K., & Vasagam, K. K. (2013). Shrimps–a nutritional perspective. Current Science, 104(11), 1487-1491.
Edwards, P. (2015). Aquaculture environment interactions: Past, present and likely future trends. Aquaculture, 447, 2-14. https://doi.org/10.1016/j.aquaculture.2015.02.001
Eissa, N., Wang, H. P., Yao, H., & Abou-Elgheit, E. (2018). Mixed Bacillus Species Enhance the Innate Immune Response and Stress Tolerance in Yellow Perch Subjected to Hypoxia and Air-Exposure Stress. Scientific Reports, 8(1), 6981. https://doi.org/10.1038/s41598-018-25269-z
El-Kady, A. A., Magouz, F. I., Mahmoud, S. A., & Abdel-Rahim, M. M. (2022). The effects of some commercial probiotics as water additive on water quality, fish performance, blood biochemical parameters, expression of growth and immune-related genes, and histology of Nile tilapia (Oreochromis niloticus). Aquaculture, 546, 737249. https://doi.org/10.1016/j.aquaculture.2021.737249
Emerenciano, M. G. C., Martínez-Córdova, L. R., Martínez-Porchas, M., & Miranda-Baeza, A. (2017). Biofloc technology (BFT): a tool for water quality management in aquaculture. Water Quality, 5, 92-109. https://doi.org/10.5772/66416
Food and Agriculture Organization (FAO). (2022). The State of World Fisheries and Aquaculture 2022: Towards Blue Transformation. FAO. https://doi.org/10.4060/cc0461en
Hasan, K. N., & Banerjee, G. (2020). Recent studies on probiotics as beneficial mediator in aquaculture: a review. Journal of Basic and Applied Zoology, 81(1), 53. https://doi.org/10.1186/s41936-020-00190-y
Hassan, M. A., Fathallah, M. A., Elzoghby, M. A., Salem, M. G., & Helmy, M. S. (2022). Influence of probiotics on water quality in intensified Litopenaeus vannamei ponds under minimum-water exchange. AMB Express, 12(1), 22. https://doi.org/10.1186/s13568-022-01370-5
Hlordzi, V., Kuebutornye, F. K. A., Afriyie, G., Abarike, E. D., Lu, Y., Chi, S., & Anokyewaa, M. A. (2020). The use of Bacillus species in maintenance of water quality in aquaculture: A review. Aquaculture Reports, 18, 100503. https://doi.org/10.1016/j.aqrep.2020.100503
Hoseinifar, S. H., Sun, Y. Z., Wang, A. R., & Zhou, Z. G. (2018). Probiotics as Means of Diseases Control in Aquaculture, a Review of Current Knowledge and Future Perspectives. Frontiers in Microbiology, 9, 2429. https://doi.org/10.3389/fmicb.2018.02429
Janeo, R. L., Corre, V. L., & Sakata, T. (2009). Water quality and phytoplankton stability in response to application frequency of bioaugmentation agent in shrimp ponds. Aquacultural Engineering, 40(3), 120-125. https://doi.org/10.1016/j.aquaeng.2009.01.001
Jasmin, M. Y., Syukri, F., Kamarudin, M. S., & Karim, M. (2020). Potential of bioremediation in treating aquaculture sludge: Review article. Aquaculture, 519, 734905. https://doi.org/10.1016/j.aquaculture.2019.734905
Jatobá, A., Borges, Y. V., & Silva, F. A. (2019). Biofloc: sustainable alternative for water use in fish culture. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 71(3), 1076-1080. https://doi.org/10.1590/1678-4162-10309
Jatobá, A., do Nascimento Vieira, F., Silva, B. C., Mouriño, J. L. P., & Seiffert, W. Q. (2015). Influência da renovação e inclusão de naúplio de tanques em laboratório de camarões marinhos (Litopnaeus vannamei). Brazilian Journal of Aquatic Science and Technology, 19(1), 77-80. https://doi.org/10.14210/bjast.v19n1.1984
Kord, M. I., Maulu, S., Srour, T. M., Omar, E. A., Farag, A. A., Nour, A. A. M., Hasimuna, O. J., Abdel-Tawwab, M., & Khalil, H. S. (2022). Impacts of water additives on water quality, production efficiency, intestinal morphology, gut microbiota, and immunological responses of Nile tilapia fingerlings under a zero-water-exchange system. Aquaculture, 547, 737503. https://doi.org/10.1016/j.aquaculture.2021.737503
Kuebutornye, F. K. A., Abarike, E. D., & Lu, Y. (2019). A review on the application of Bacillus as probiotics in aquaculture. Fish & Shellfish Immunology, 87, 820-828. https://doi.org/10.1016/j.fsi.2019.02.010
Lin, Y. C., & Chen, J. C. (2001). Acute toxicity of ammonia on Litopenaeus vannamei Boone juveniles at different salinity levels. Journal of Experimental Marine Biology and Ecology, 259(1), 109-119. https://doi.org/10.1016/S0022-0981(01)00227-1
Lin, Y. C., & Chen, J. C. (2003). Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture, 224(1-4), 193-201. https://doi.org/10.1016/S0044-8486(03)00220-5
Morales, V., & Cuéllar-Anjel, J. (eds.). (2014). Guía Técnica: Patología e Inmunología de Camarones Penaeidos (2ª ed.). OIRSA.
Mota, V. L. R., Adolfo, J., & Silva, L. R. (2021). Caracterização da produção de Tilápia-do-Nilo Oreochromis niloticus em diferentes sistemas de cultivo no Sul de Santa Catarina. Revista em Agronegócio e Meio Ambiente, 14(2), 455-468. https://doi.org/10.17765/2176-9168.2021v14n2e7906
Natnan, M., Mayalvanan, Y., Jazamuddin, F., Aizat, W., Low, C.- F., Goh, H.-H., Azizan, K. A., Bunawan, H., & Baharum, S. (2021). Omics Strategies in Current Advancements of Infectious Fish Disease Management. Biology, 10(11), 1086. https://doi.org/10.3390/biology10111086
Patil, P. K., Antony, L., Avunje, S., Viswanathan, B., Lalitha, N., Jangam, A. K., Kumar, D., Solanki, H. G., Reddy, M. A., Alavandi, S. V., & Vijayan, K. K. (2021). Bioaugmentation with nitrifying and denitrifying microbial consortia for mitigation of nitrogenous metabolites in shrimp ponds. Aquaculture, 541,736819. https://doi.org/10.1016/j.aquaculture.2021.736819
Ray, A. J., Lewis, B. L., Browdy, C. L., & Leffler, J. W. (2010). Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant-based feed in minimal-exchange, superintensive culture systems. Aquaculture, 299(1-4), 89-98. https://doi.org/10.1016/j.aquaculture.2009.11.021
Samocha, T. M., Patnaik, S., Speed, M., Ali, A.-M., Burger, J. M., Almeida, R. V., Ayub, Z., Harisanto, M., Horowitz, A., & Brock, D. L. (2007). Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacultural Engineering, 36(2), 184-191. https://doi.org/10.1016/j.aquaeng.2006.10.004
Schveitzer, R., Arantes, R., Costodio, P. F. S., Santo, C. M. D., Arana, L. V., Seiffert, W. Q., & Andreatta, E. R. (2013). Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquacultural Engineering, 56, 59-70. https://doi.org/10.1016/j.aquaeng.2013.04.006
Sharma, I. (2020). Bioremediation Techniques for Polluted Environment: Concept, Advantages, Limitations, and Prospects. In Murillo-Tovar, M., Saldarriaga-Noreña, H., & Saeid, A. (eds.). Trace Metals in the Environment - New Approaches and Recent Advances. IntechOpen. https://doi.org/10.5772/intechopen.90453
Soaudy, M. R., Ghonimy, A., Greco, L. S. L., Chen, Z., Dyzenchauz, A., & Li, J. (2023). Total suspended solids and their impact in a biofloc system: Current and potentially new management strategies. Aquaculture, 572, 739524. https://doi.org/10.1016/j.aquaculture.2023.739524
Suantika, G., Situmorang, M. L., Kurniawan, J. B., Pratiwi, S. A., Aditiawati, P., Astuti, D. I., Azizah, F. F. N., Djohan, Y. A., Zuhri, U., & Simatupang, T. M. (2018). Development of a zero water discharge (ZWD)—Recirculating aquaculture system (RAS) hybrid system for super intensive white shrimp (Litopenaeus vannamei) culture under low salinity conditions and its industrial trial in commercial shrimp urban farming in Gresik, East Java, Indonesia. Aquacultural Engineering, 82, 12-24. https://doi.org/10.1016/j.aquaeng.2018.04.002
Telli, G. S., Ranzani-Paiva, M. J. T., Dias, D. C., Sussel, F. R., Ishikawa, C. M., & Tachibana, L. (2014). Dietary administration of Bacillus subtilis on hematology and nonspecific immunity of Nile tilapia Oreochromis niloticus raised at different stocking densities. Fish & Shellfish Immunology, 39(2), 305-311. https://doi.org/10.1016/j.fsi.2014.05.025
Vinatea, L. (2010). Qualidade da água em aquicultura: princípios e práticas (3ª ed.). Universidade Federal de Santa Catarina.
Vinatea, L., Galvez, A. O., Browdy, C. L., Stokes, A., Venero, J., Haveman, J., Leffler, J. W. (2010). Photosynthesis, water respiration and growth performance of Litopenaeus vannamei in a super-intensive raceway culture with zero water exchange: Interaction of water quality variables. Aquacultural Engineering, 42(1), 17-24. https://doi.org/10.1016/j.aquaeng.2009.09.001
Xie, J. J., Liu, Q. Q., Liao, S., Fang, H. H., Yin, P., Xie, S. W., Tian, L. X., Liu, Y J., & Niu, J. (2019). Effects of dietary mixed probiotics on growth, non-specific immunity, intestinal morphology and microbiota of juvenile pacific white shrimp, Litopenaeus vannamei. Fish & Shellfish Immunology, 90, 456-465. https://doi.org/10.1016/j.fsi.2019.04.301
Zar, J. H. (2010). Biostatistical analysis (5ª ed.). Pearson Prentice Hall.
Zhao, S., Hu, N., Chen, Z., Zhao, B., & Liang, Y. (2009). Bioremediation of Reclaimed Wastewater Used as Landscape Water by Using the Denitrifying Bacterium Bacillus cereus. Bulletin of Environmental Contamination and Toxicology, 83(3), 337-340. https://doi.org/10.1007/s00128-009-9684-x
Zhou, X., Tian, Z., Wang, Y., & Li, W. (2010). Effect of treatment with probiotics as water additives on tilapia (Oreochromis niloticus) growth performance and immune response. Fish Physiology and Biochemistry, 36(3), 501-509. https://doi.org/10.1007/s10695-009-9320-z
Zorriehzahra, M. J., Delshad, S. T., Adel, M., Tiwari, R., Karthik, K., Dhama, K., & Lazado, C. C. (2016). Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review. Veterinary Quarterly, 36(4), 228-241. https://doi.org/10.1080/01652176.2016.1172132
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2024 Natalia Pereira, Amanda Dartora, Julia Delmonego Hess , Giovanni Mello, Adolfo Jatobá
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.