Culture of the gastropod Pomacea dolioides (Reeve, 1856): effects of calcium on growth, survival and shell regeneration

Authors

  • Rafaela Fernanda Batista Ferreira Universidade Federal do Amazonas – Instituto de Ciências Exatas e Tecnologia, Programa de Pós-Graduação em Ciência e Tecnologia para Recursos Amazônicos – Itacoatiara (AM), Brazil. https://orcid.org/0009-0007-7465-5850
  • Fernando José Zara Universidade Estadual Paulista – Departamento de Biologia, Laboratório de Morfologia de Invertebrados – Jaboticabal (SP), Brazil. https://orcid.org/0000-0002-7664-7674
  • Bruno Sampaio Sant'Anna Universidade Federal do Amazonas – Instituto de Ciências Exatas e Tecnologia, Programa de Pós-Graduação em Ciência e Tecnologia para Recursos Amazônicos – Itacoatiara (AM), Brazil. https://orcid.org/0000-0001-9689-4894

DOI:

https://doi.org/10.20950/1678-2305/bip.2024.51.e933

Keywords:

Pomacea, Growth, Regeneration, Aquaculture

Abstract

Gastropods of the genus Pomacea are exploited for food in different parts of the world. Pomacea dolioides has recently received attention on its stocking density and meat characteristics, remaining a gap on the effects of calcium in its cultivation. The present study evaluated the influence of calcium dissolved in water on the culture of the gastropod P. dolioides considering the growth, weight, survival, ultrastructure, and shell regeneration time. Juveniles were distributed into six treatments with different concentrations of Ca2+. The calcium dissolved in water was essential, as gastropod did not survive for more than 40 days without calcium. Also it showed greater growth and fattening with 60 mg*L-1 of CaSO4 or more, in addition to a thicker shell with two layers of crystals. The calcium carbonate content in the shells was significantly higher in the treatment with 80 mg*L-1 of CaSO4. The regeneration time did not differ between treatments. Based on these results, it was concluded that the calcium dissolved in the water influences the culture of the gastropod P. dolioides in relation to the length, inorganic and organic weight and calcium of the snail, and 80 mg*L-1 of CaSO4 is the ideal concentration to culture species.

References

Baird, R., Rice, E., & Eaton, A. (2017). Standard methods for the examination of water and wastewaters. In C. E. W. Rice, A. D. Eaton, & American Water Works Association (Eds.), Water Environment Federation, American Public Health Association (pp. 71-90).

Brodersen, J., & Madsen, H. (2003). The effect of calcium concentration on the crushing resistance, weight and size of Biomphalaria sudanica (Gastropoda: Planorbidae). Hydrobiologia, 490, 181-186. https://doi.org/10.1023/A:1023495326473

Bukowski, S. J., & Auld, J. R. (2014). The effects of calcium in mediating the inducible morphological defenses of a freshwater snail, Physa acuta. Aquatic Ecology, 48(1), 85-90. https://doi.org/10.1007/s10452-013-9468-6

Cadée, G. C. (2011). Hydrobia as ‘Jonah in the whale’: Shell repair after passing through the digestive tract of shelducks alive. Palaios, 26(4), 245-249. https://doi.org/10.2110/palo.2010.p10-095r

Dalesman, S., Braun, M. H., & Lukowiak, K. (2011). Low environmental calcium blocks long-term memory formation in a freshwater pulmonate snail. Neurobiology of Learning and Memory, 95(4), 393-403. https://doi.org/10.1016/j.nlm.2010.11.017

Dantas, E. P. F., & Sant’Anna, B. S. (2021). The edible apple snail (Pomacea dolioides (Reeve, 1856)): Meat yield and sensorial evaluation. International Food Research Journal, 28(5), 953-959. https://doi.org/10.47836/ifrj.28.5.08

Darwin, C. H., & Padmavathi, P. (2018). Preliminary assessment of calcium in six molluscan shells of Tamilnadu coast, India. Ecology, Environment and Conservation, 24, 302-305. https://doi.org/10.13140/RG.2.2.30050.79048

Dauphin, Y., Cuif, J. P., Castillo-Michel, H., Chevallard, C., Farre, B., & Meibom, A. (2014). Unusual micrometric calcite–aragonite interface in the abalone shell Haliotis (Mollusca, Gastropoda). Microscopy and Microanalysis, 20(1), 276-284. https://doi.org/10.1017/S1431927613013718

De Paula, S. M., & Silveira, M. (2009). Studies on molluscan shells: Contributions from microscopic and analytical methods. Micron, 40(7), 669-690. https://doi.org/10.1016/j.micron.2009.05.006

De Paula, S. M., Huila, M. F. G., Araki, K., & Toma, H. E. (2010). Confocal Raman and electronic microscopy studies on the topotactic conversion of calcium carbonate from Pomacea lineata shells into hydroxyapatite bioceramic materials in phosphate media. Micron, 41(8), 983-989. https://doi.org/10.1016/j.micron.2010.06.014

Ebanks, S. C., O’Donnell, M. J., & Grosell, M. (2010). Characterization of mechanisms for Ca2+ and HCO3-/CO32- acquisition for shell formation in embryos of the freshwater common pond snail Lymnaea stagnalis. Journal of Experimental Biology, 213(23), 4092-4098. https://doi.org/10.1242/jeb.045088

Estebenet, A. L., Martín, P. R., & Burela, S. (2006). Conchological variation in Pomacea canaliculata and other South American Ampullariidae (Caenogastropoda, Architaenioglossa). Biocell, 30(2), 329-335.

Fonseca, A. M., Hattori, G. Y., Costa, M. B., & Sant’Anna, B. S. (2017). Imposex in two apple snails of the Amazon. In B. S. Sant’Anna & G. Y. Hattori (Eds.), Amazonian Apple Snails (pp. 47-65). Nova Science Publishers.

Glass, N. H., & Darby, P. C. (2009). The effect of calcium and pH on Florida apple snail, Pomacea paludosa (Gastropoda: Ampullariidae), shell growth and crush weight. Aquatic Ecology, 43, 1085-1093. https://doi.org/10.1007/s10452-008-9226-3

Hüning, A. K., Lange, S. M., Ramesh, K., Jacob, D. E., Jackson, D. J., Panknin, U., Gutowska, M. A., Philipp, E. E. R., Rosenstiel, P., Lucassen, M., & Melzner, F. (2016). A shell regeneration assay to identify biomineralization candidate genes in mytilid mussels. Marine Genomics, 27, 57-67. https://doi.org/10.1016/j.margen.2016.03.011

Jesús-Navarrete, A., Sanchez, D. J. C. A., & Ortíz-Hernádez, C. (2023). Growth and shell hardness of the apple snail Pomacea flagellata Say, 1829, reared at three calcium concentrations. PeerJ, 11, e14840. https://doi.org/10.7717/peerj.14840

Kádár, E. (2008). Haemocyte response associated with induction of shell regeneration in the deep-sea vent mussel Bathymodiolus azoricus (Bivalvia: Mytilidae). Journal of Experimental Marine Biology and Ecology, 362(2), 71-78. https://doi.org/10.1016/j.jembe.2008.05.014

Kádár, E., Tschuschke, I. G., & Checa, A. (2008). Post-capture hyperbaric simulations to study the mechanism of shell regeneration of the deep-sea hydrothermal vent mussel Bathymodiolus azoricus (Bivalvia: Mytilidae). Journal of Experimental Marine Biology and Ecology, 364(2), 80-90. https://doi.org/10.1016/j.jembe.2008.07.028

Li, S., Liu, Y., Liu, C., Huang, J., Zheng, G., Xie, L., & Zhang, R. (2016). Hemocytes participate in calcium carbonate crystal formation, transportation and shell regeneration in the pearl oyster Pinctada fucata. Fish & Shellfish Immunology, 51, 263-270. https://doi.org/10.1016/j.fsi.2016.02.027

Liang, Y., Zhao, J., & Wu, C. (2010). The micro/nanostructure characteristics and the mechanical properties of Hemifusus tuba conch shell. Journal of Bionic Engineering, 7, 307-313. https://doi.org/10.1016/S1672-6529(10)60261-2

Limeira Jr., S. C. M., Rodrigues, S. C., & Ghilardi, R. P. (2023). Characterization of the cross-lamellar structure of Olivancillaria urceus (Gastropoda: Olividae) and its dissolution pattern. Micron, 166, 103416. https://doi.org/10.1016/j.micron.2023.103416

Liu, A. X., Jin, C., Li, H., Bai, Z., & Li, J. (2018). Morphological structure of shell and expression patterns of five matrix protein genes during the shell regeneration process in Hyriopsis cumingii. Aquaculture and Fisheries, 3(6), 225-231. https://doi.org/10.1016/j.aaf.2018.09.005

Liu, L. L., Zhao, S., Yang, J. E., Zhang, N. Q., Zhao, H., Wu, Z., He, T. M. Y., & Guo, J. (2017). Regeneration of excised shell by the invasive apple snail Pomacea canaliculata. Marine and Freshwater Behaviour and Physiology, 50(1), 17-29. https://doi.org/10.1080/10236244.2016.1261455

Liu, Y., Bai, Z., Li, Q., Zhao, Y., & Li, J. (2013). Healing and regeneration of the freshwater pearl mussel Hyriopsis cumingii Lea after donating mantle saibos. Aquaculture, 392-395, 34-43. https://doi.org/10.1016/j.aquaculture.2013.01.035

Madsen, H. (1987). Effect of calcium concentration on growth and egg laying of Helisoma duryi, Biomphalaria alexandrina, B. camerunensis and Bulinus truncatus (Gastropoda: Planorbidae). Journal of Applied Ecology, 24(3), 823-836. https://doi.org/10.2307/2403983

Magalhães, A. C. S., Pinheiro, J., & Mello-Silva, C. C. (2011). A mobilização do cálcio em Biomphalaria glabrata exposta a diferentes quantidades de carbonato de cálcio. Revista de Patologia Tropical, 40(1), 46-55. https://doi.org/10.5216/rpt.v40i1.13916

Marin, F., & Luquet, G. (2004). Molluscan shell proteins. Comptes Rendus Palevol, 3(6-7), 469-492. https://doi.org/10.1016/j.crpv.2004.07.009

Martin, P. R., Estebenet, A. L., & Cazzaniga, N. J. (2001). Factors affecting the distribution of Pomacea canaliculata (Gastropoda: Ampullariidae) along its southernmost natural limit. Malacologia, 43(1), 13-23.

Meldrum, F. C. (2003). Calcium carbonate in biomineralisation and biomimetic chemistry. International Materials Reviews, 48(3), 187-224. https://doi.org/10.1179/095066003225005836

Melo, I. B., Hattori, G. Y., & Sant’Anna, B. S. (2017). Reproduction and substrate selection for oviposition of the gastropod Pomacea dolioides (Reeve, 1856). In B. S. Sant’Anna & G. Y. Hattori (Eds.), Amazonian apple snails (pp. 89-107). Nova Science Publishers.

Morrison, A. E., & Cochrane, E. E. (2008). Investigating shellfish deposition and landscape history at the Natia Beach site, Fiji. Journal of Archaeological Science, 35(8), 2387-2399. https://doi.org/10.1016/j.jas.2008.03.013

Nduku, W. K., & Harrison, A. D. (1976). Calcium as a limiting factor in the biology of Biomphalaria pfeifferi (Krauss), (Gastropoda: Planorbidae). Hydrobiologia, 49, 43-170. https://doi.org/10.1007/BF00772685

Ohta, T., & Saeki, I. (2020). Comparisons of calcium sources between arboreal and ground-dwelling land snails: Implication from strontium isotope analyses. Journal of Zoology, 311(2), 137-144. https://doi.org/10.1111/jzo.12767

Paschoal, L. R. P., & Oliveira, L. J. F. (2017). Histology and histochemistry of the testes in two Amazonian pple snails. In B. S. Sant’Anna & G. Y. Hattori (Eds.), Amazonian apple snails (pp. 127-144). Nova Science Publishers.

Pierre, S. M., Quintana-Ascencio, P. F., Boughton, E. H., & Jenkins, D. G. (2017). Dispersal and local environment affect the spread of an invasive apple snail (Pomacea maculata) in Florida, USA. Biological Invasions, 19, 2647-2661. https://doi.org/10.1007/s10530-017-1474-5

Pires-Júnior, A. N., Hattori, G. Y., & Sant’Anna, B. S. (2019). Effect of stock density of cultured Amazon apple snail Pomacea dolioides (Gastropoda: Ampullariidae) in Brazil. Brazilian Journal of Animal Science, 48, 1-8. https://doi.org/10.1590/rbz4820180053

Posch, H., Garr, A. L., Pierce, R., & Davis, M. (2012). The effect of stocking density on the reproductive output of hatchery-reared Florida apple snails, Pomacea paludosa. Aquaculture, 360-361, 37-40. https://doi.org/10.1016/j.aquaculture.2012.07.007

Rodríguez, F. V. I., & Carranza, M. M. (2007). Validación del cultivo semi-intensivo de caracol Tote (Pomacea flagellata), en el trópico húmedo. AquaTIC, (27), 16-30.

Silva, D., & Debacher, N. A. (2010). Caracterização físicoquímica e microestrutural de conchas de moluscos bivalves provenientes de cultivos da região litorânea da ilha de Santa Catarina. Química Nova, 33(5), 1053-1058. https://doi.org/10.1590/S0100-40422010000500009

Soído, C., Vasconcellos, M. C., Diniz, A. G., & Pinheiro, J. (2009). An improvement of calcium determination technique in the shell of molluscs. Brazilian Archives of Biology and Technology, 52(1), 93-98. https://doi.org/10.1590/S1516-89132009000100012

Suzuki, M., & Nagasawa, H. (2013). Mollusk shell structures and their formation mechanism. Canadian Journal of Zoology, 91(6), 349-366. https://doi.org/10.1139/cjz-2012-0333

Thomas, J. D., Benjamin, M., Lough, A., & Aram, R. H. (1974). The effects of calcium in the external environment on the growth and natality rates of Biomphalaria glabrata (Say). Journal of Animal Ecology, 43(3), 839-860. https://doi.org/10.2307/3539

Trinkler, N., Jean-François, B., Frédéric, M., Maylis, L., Jolivet, A., Philippe, C., & Christine, P. (2011). Mineral phase in shell repair of Manila clam Venerupis philippinarum affected by brown ring disease. Diseases of Aquatic Organisms, 93, 149-162. https://doi.org/10.3354/dao02288

Trinkler, N., Sinquin, G., Querne, J., & Paillard, C. (2010). Resistance to brown ring disease in the Manila clam, Ruditapes philippinarum: A study of selected stocks showing a recovery process by shell repair. Journal of Invertebrate Pathology, 104(1), 8-16. https://doi.org/10.1016/j.jip.2009.12.007

Tunholi, V. M., Lustrino, D., Tunholi-Alves, V. M., Garcia, J. S., Mello-Silva, C. C. C., Maldonado, J. R. A., & Rodrigues, M. (2011). Influence of Echinostoma paraensei (Lie and Basch, 1967) infection on the calcium content in Biomphalaria glabrata (Say, 1818). Experimental Parasitology, 129(3), 266-269. https://doi.org/10.1016/j.exppara.2011.07.016

Watson, A. M., & Ormerod, S. J. (2004). The distribution of three uncommon freshwater gastropods in the drainage ditches of British grazing marshes. Biological Conservation, 118(4), 455-466. https://doi.org/10.1016/j.biocon.2003.09.021

Yang, S., Ni, L., Zhao, L., Yang, J., Liu, Q., Zhang, J., He, Z., & Peng, S. (2016). Repair process and enzymatic activity associated with induction of shell regeneration in the invasive species. Molluscan Research, 36(3), 207-212. https://doi.org/10.1080/13235818.2015.1128603

Downloads

Published

2025-05-30

Issue

Section

Scientific Article