SALTED SARDINE RESIDUE TO FEED COBIA: ZOOTECHNIC ADVANTAGES AND HISTOLOGICAL RESPONSES
DOI:
https://doi.org/10.20950/1678-2305.2019.45.1.442Keywords:
aquaculture, hepatosomatic, mariculture, Rachycentron canadum, Sardinella brasiliensisAbstract
Industrial fish processing generates a significant amount of wastes, which are high-value nutritional by product. Therefore, the use of fish residues could be a sustainable practice for fattening marine finfishes. In the present study, we have evaluated the benefits of feeding cobia juveniles with three different diets based on residues of salted sardine: (i) formulated with acid silage of salted sardine residue; (ii) formulated with salted residue combined with an acidity regulator; and (iii) pure salted sardine residue. Fishes that were feed with pure salted sardine residue had significant body weight gain and also expressed a lower feed conversion rate. Fishes feed with the other two diets presented a similarly lower zootechnic performance. Also, no significant changes indicating a harmful effect of salted sardine residue for cobia feed were observed in the digestive tract of any the fishes. However, the diet based only on salted sardine residue showed higher organosomatic indexes. That can be attributed to the rich lipid and fatty acid contents of pure residue and it can be an indicative that silage processing was unable to provide the same amount of fatty acids, as pure residue diet did. In conclusion, our results indicate that pure salted sardine residue was the best choice of feed for the cobia. The use of salted sardine residue as diet complementation should be further evaluated, since its use can improve aquaculture development as an instrument of fishery resources conservation.
References
Ashley, P.J. 2007. Fish welfare: current issues in aquaculture. Applied Animal Behaviour Science, 104(3): 199-235.
Bancroft, J.D.; Stevens, A. 1982. Theory and practice in of histological technicians. Churchill, London. 320p.
Barbieri, R.L; Leite, R.G.; Hernandez-Blazquez, F.J. 1989. Morphologie du tract digestif du curimbatá Prochilodus scrofa. Ciência e Cultura, 41(1): 67-70.
Barbieri, E.; Doi, S.A. 2012. Acute toxicity of ammonia on juvenile cobia (Rachycentron canadum, Linnaeus, 1766) according to the salinity, 20(2): 373-382.
Barone, R.S.C.; Lorenz, E.K.; Sonoda, D.Y.; Cyrino, J.E.P. 2017. Fish and fishery products trade in Brazil, 2005 to 2015: A review of available data and trends. Scientia Agricola, 74(5): 417-424.
Barton, B.A.; Morgan, J.D.; Vijayan, M.M. 2002. Physiological and condition-related indicators of environmental stress in fish. In: Adams S M (ed) Biological indicators of ecosystem stress. American Fisheries Society, Bethesda, MD, p. 111-148.
Benetti, D.D.; O'Hanlon, B.; Rivera, J.A.; Welch, A.W.; Maxey, C.; Orhun, M.R. 2010. Growth rates of cobia (Rachycentron canadum) cultured in open ocean submerged cages in the Caribbean. Aquaculture 302(3-4): 195-201.
Blanco, M.; Sotelo, C.G.; Chapela, M.J.; Pérez-Martín, R.I. 2007. Towards sustainable and efficient use of fishery resources: present and future trends. Trends in Food Science & Technology, 18(1): 29-36.
Brasil, 2009. Portaria nº 15, de 22 de maio de 2009. Regulamenta a captura da sardinha Sardinella brasiliensis. Diário Oficial da União, Brasília, 22 de maio de 2009, nº 96, Seção 1, p.81.
Broggi, J.A.; Wosniak, B.; Uczay, J.; Pessatti, M.L.; Fabregat, T.E.H.P. 2017. Hidrolisado proteico de resíduo de sardinha como atrativo alimentar para juvenis de jundiá. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 69(1): 505-512.
Carvalho, M.; Peres, H.; Saleh, R.; Fontanillas, R.; Rosenlund, R.; Oliva-Teles, A.; Izquierdo, M. 2018. Dietary requirement for n-3 long-chain polyunsaturated fatty acids for fast growth of meagre (Argyrosomus regius Asso, 1801) fingerlings. Aquaculture, 488(1): 105-113.
Cavalli, R.O.; Domingues, E.C.; Hamilton, S. 2011. Desenvolvimento da produção de peixes em mar aberto no Brasil: possibilidades e desafios. Revista Brasileira de Zootecnia, 40(1): 155-164.
Craig, S.R.; Schwarz, M.H.; Mclean, E. 2006. Juvenile cobia (Rachycentron canadum) can utilize a wide range of protein and lipid levels without impacts on production characteristics. Aquaculture, 261(1): 384-391.
Downes, F.P.; Ito, K. 2001. Compendium of Methods for the Microbiological Examination of Foods (4th ed.) Edwards Brothers, Washington. 230p.
Fagbenro, O.; Jauncey, K. 1993. Chemical and nutritional quality of raw, cooked and salted fish silages. Food Chemistry, 48(4): 331-335.
Faulk, C.K.; Benninghoff, A.D.; Holt, G.J. 2007. Ontogeny of the gastrointestinal tract and selected digestive enzymes in cobia Rachycentron canadum (L.). Journal Fish of Biology, 70(2): 567-583.
Feltes, M.M.C.; Correia, J.F.G.; Beirão, L.H.; Block, J.M.; Ninow, J.L.; Spiller, V.R. 2010. Alternativas para a agregação de valor aos resíduos da industrialização de peixe. Revista Brasileira de Engenharia Agrícola e Ambiental, 14(6): 669-677.
Fraser, T.W.; Davies, S.J. 2009. Nutritional requirements of cobia, Rachycentron canadum (Linnaeus): a review. Aquaculture Research, 40(11): 1219-1234.
Gonçalves, E.L.T.; Sanches, E.G.; Martins, M.L.; Tsuzuki, M.Y. 2016. Fotobacteriose em cultivo de cobia no Brasil. Pesquisa Agropecuária Brasileira, 51(5): 465-472.
Hernandez-Blazquez, F.J.; Guerra, R.R.; Kfoury Jr., J.R.; Bombonato, P.P.; Cogliati, B.; Silva, J.R.M.C. 2006. Fat absorptive processes in the intestine of the Antarctic fish (Richardson, 1844). Polar Biology, 29(2): 831-836.
Hevrí¸y, E.M.; Espe, M.; Waagbí¸, R.; Sandnes, K.; Ruud, M.; Hemre, G.I. 2005. Nutrient utilization in Atlantic salmon (Salmo salar L.) fed increased levels of fish protein hydrolysate during a period of fast growth. Aquaculture Nutrition, 11(4): 301í 313.
Kapoor, B.G.; Smith, H.; Verighina, I.A. 1975. The alimentary canal and digestion in teleosts. Advances in Marine Biology, 13(1): 109-139.
Kuperman, B.I.; Kuz´mina, V.V. 1994. The ultrastructure of the intestinal ephitelium in fishes with different types of feeding. Journal of Fish Biology, 44(3): 181-193.
Lunger, A.N.; McLean, E.; Craig, S.R. 2007. The effects of organic protein supplementation upon growth feed conversion and texture quality parameters of juvenile cobia (Rachycentron canadum). Aquaculture, 264(1): 342-352.
Mach, D.T.N.; Nguyen, M.D.; Nortvedt, R. 2010. Effects on digestibility and growth of juvenile cobia (Rachycentron canadum) fed fish or crab silage protein. Aquaculture Nutrition, 16(2): 305í 312.
Mach, D.T.N.; Nortvedt, R. 2013. Comparison of fillet composition and initial estimation of shelf life of cobia (Rachycentron canadum) fed raw fish or fish silage moist diets. Aquaculture Nutrition, 19(3): 333-342.
McDowell, E.M.; Trump, B.F. 1976. Histologic fixatives suitable for diagnostic light and electron microscopy. Archives of Pathology & Laboratory Medicine, 100(8): 405-414.
Nhu, V.C.; Nguyen, H.Q.; Le, T.L.; Tran, M.T.; Sorgeloos, P.; Dierckens, K.; Reinertsen, H.; Kjorsvik, E.; Svennevig, N. 2011. Cobia Rachycentron canadum aquaculture in Vietnam: recent developments and prospects. Aquaculture, 315(1): 20-25.
Nunes, A.J.P.; Pinto, R.C.C.; Sá, M.V.C. 2011. Labomar study defines optimal dietary lipid, energy content for fat snook. Global Aquaculture Advocate, 78(5): 74-75.
Olsen, R.L.; Toppe, J. 2017. Fish silage hydrolysates not only a feed nutrient, but also a useful feed additive. Trends in Food Science & Technology, 66(1): 93í 97.
Pessatti, M.L. 2001. Aproveitamento dos sub-produtos do pescado. Itajaí: MAPA/UNIVALI. 130p.
Philipose, K.K.; Loka, J.; Sharma, S.R.; Divu, D.; Srinivasa Rao, K.; Sadhu, N.; Dube, P.; Gopakumar, G.; Syda Rao, G. 2013. Farming of cobia, Rachycentron canadum (Linnaeus 1766) in open sea floating cages in India. Indian Journal of Fisheries, 60(4): 35-40.
Raa, J.; Gildberg. A.; Olley, J.N. 1982. Fish silage: a review. Critical Reviews in Food Science and Nutrition, 16(4): 383-419.
Ramos, F.M.; Sanches, E.G.; Fujimoto, R.Y.; Cottens, K.F.; Cerqueira, V.R. 2012. Growth of juvenile dusky grouper Epinephelus marginatus at three different diets. Boletim do Instituto de Pesca, 38(1): 81-88.
Resley, M.J.; Webb Jr., K.W.; Holt, J.G. 2006. Growth and survival of juvenile cobia, Rachycentron canadum, at different salinities in a recirculating aquaculture system. Aquaculture, 253(4): 398-407.
Romarheim, O.H.; Zhang, C.; Penn, M.; Liu, Y-J.; Tian, L-X.; Skrede, A.; Krogdahl, í"¦.; Storebakken, T. 2008. Growth and intestinal morphology in cobia (Rachycentron canadum) fed extruded diets with two types of soybean meal partly replacing fish meal. Aquaculture Nutrition, 14(2): 174-180.
Sanches, E.G.; Oliveira, I.R.; Serralheiro, P.C.S. 2009. Semen cryopreservation of dusky grouper Epinephelus marginatus (Lowe 1834) (Teleostei, Seranidae). Boletim do Instituto de Pesca, 35(3): 389-399.
Sanches, E.G.; Cerqueira, V.R. 2010. Refrigerated storage of lane snapper Lutjanus synagris sperm. Boletim do Instituto de Pesca, 36(1): 293-305.
Sanches, E.G.; Oliveira, I.R.; Serralheiro, P.C.S.; Cerqueira, V.R. 2013. Cryopreservation of mutton snapper (Lutjanus analis) sperm. Anais da Academia Brasileira de Ciências, 85(1): 1083-1091.
Sanches, E.G.; Silva, F.C.; Leite, J.R.; Silva, P.K.A.; Kerber, C.E.; Santos, P.A. 2014. Can fish oil incorporation in diet improve the growth performance of dusky grouper Epinephelus marginatus? Boletim do Instituto de Pesca, 40(2): 147-155.
Santos, C.M.; Duarte, S. 2007. Histologia e caracterização histoquímica do tubo gastrintestinal de Pimelodus maculatus (Pimelodidae, Siluriformes) no reservatório de Funil, Rio de Janeiro, Brasil. Iheringea Série Zoologia, 97(1): 113-120.
Saraiva, A.; Costa, J.; Serrão J.; Cruz, C.; Eiras, J.C. 2015. A histology-based fish health assessment of farmed seabass (Dicentrarchus labrax L.). Aquaculture, 448(2): 375-381.
Silva Jr., R.F.; Nova, W.V.; Farias, J.L.; Costa-Bomfim, C.N.; Tesser, M.B.; Druzian, J.I.; Correia, E.S.; Cavalli, R.O. 2011. Substituição do óleo de peixe por óleo de soja em dietas para beijupirá (Rachycentron canadum). Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 63(2): 980-987.
Soltan, M.A.; Fouad, I.M.; El-Zyat, A.M.; Zead, M.A. 2017. Possibility of using fermented fish silage as feed ingredient in the diets of Nile Tilapia, Oreochromis niloticus. Global Veterinaria, 18(1):59-67.
Stroband, H.W.J.; Meer, H.V.D.; Timmermans, L.P.M. 1979. Regional functional differentiation in the gut of the grasscarp Ctenopharyngodon idella. Histochemical Journal, 64(2): 235-249.
Tolosa, E.M.C.; Rodrigues, C.J.; Behmer, O.A.; Freitas-Neto A.G. 2003. Manual de técnicas para histologia normal e patológica. 2ª ed. Manole, São Paulo, p.331.
Trushenski, J.T.; Kasper, C.S.; Kohler, C.C. 2006. Challenges and opportunities in finfish nutrition. North American Journal of Aquaculture, 68(2): 122-140.
Visentainer, J.V.; Carvalho, P.D.O.; Ikegaki, M.; Park, Y.K. 2000. Concentração de ácido eicosapentaenóico (EPA) e ácido docosahexaenóico (DHA) em peixes marinhos da costa brasileira. Ciência e Tecnologia dos Alimentos, 20(1): 90-93.
Wang, J.T.; Liu, Y.J.; Tian, L.X.; Mai, K.S.; Du, Z.Y.; Wang, Y.; Yang, H.J. 2005. Effects of dietary lipid level on growth performance, lipid deposition, hepatic lipogenesis in juvenile cobia (Rachycentron canadum). Aquaculture, 249(1): 439-447
Wills, P.S.; Weirich, C.R.; Baptiste, R.M.; Riche, M.A. 2013. Evaluation of commercial marine fish feeds for production of juvenile cobia in recirculating aquaculture systems. North American Journal of Aquaculture, 75(2): 178-185.
Xu, H.; Cao, L.; Wei, Y.; Zhang, Y.; Liang, M. 2018. Lipid contents in farmed fish are influenced by dietary DHA/EPA ratio: A study with the marine flatfish, tongue sole (Cynoglossus semilaevis). Aquaculture, 485(2): 183-190.