IMPLICAÇí-ES GENÉTICAS DOS PROGRAMAS DE REPOVOAMENTO DE POPULAÇí-ES SELVAGENS DE CURIMBA <i>Prochilodus lineatus<i>

Autores

  • Lin Hua Liu IWERSEN Departamento de Aquicultura, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina - UFSC
  • Claudio Manoel Rodrigues de MELO Departamento de Aquicultura, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina - UFSC
  • Cristiano LAZOSKI Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro - UFRJ, http://orcid.org/0000-0002-6322-4672
  • Evoy Zaniboni-FILHO Departamento de Aquicultura, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina - UFSC/Laboratório de Biologia e Cultivo de Peixes de Água Doce, Departamento de Aquicultura, Universidade Federal de Santa Catarina http://orcid.org/0000-0001-6457-2655
  • Josiane RIBOLLI Departamento de Aquicultura, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina - UFSC/Laboratório de Biologia e Cultivo de Peixes de Água Doce, Departamento de Aquicultura, Universidade Federal de Santa Catarina http://orcid.org/0000-0002-5553-9973

DOI:

https://doi.org/10.20950/1678-2305.2019.45.3.497

Palavras-chave:

recursos pesqueiros, curimbatá, peixes de água doce, genética de populaçí­µes, repovoamento

Resumo

A diversidade genética das populações selvagens e cultivadas é crucial, tanto para a conservação dos recursos pesqueiros como para o desenvolvimento da piscicultura. Para inferir a diversidade genética e estrutura populacional do curimba Prochilodus lineatus, indiví­­duos foram amostrados, entre 2007- 2009, em quatro fazendas de peixes e da Bacia do Alto Uruguai, ambas no sul do Brasil. A estrutura populacional foi identificada em indiví­­duos cultivados e selvagens, através de sete locos microssatélites. A análise bayesiana indicou três grupos principais, incluindo dois grupos oriundos de pisciculturas. A diferenciação genética par-a-par revelou estrutura espacial entre e dentro de populações selvagens e cultivadas; no entanto, o desenho amostral não permitiu testar a estrutura temporal de acordo com o isolamento por tempo (IBT), o que significa que as populações podem reproduzir dentro da mesma distribuição geográfica, mas reproduzir em diferentes momentos. Os indiví­­duos cultivados apresentaram menor diversidade, riqueza alélica e tamanho efetivo populacional, porém maiores taxas de endogamia, quando comparados í­Â s populações selvagens. Estas caracterí­­sticas constituem sinais de alerta contra o repovoamento indiscriminado de populações naturais de Prochilodus lineatus, uma espécie sensí­­vel a habitats fragmentados, com peixes oriundos de pisciculturas.

Referências

Allan, J.D.; Abell, R.; Hogan, Z.E.B.; Revenga, C.; Taylor, B.W.;Welcomme, R.L.; Winemiller, K. 2005. Overfishing of inland waters. AIBS Bulletin, 55(12): 1041-1051. https://doi.org/10.1641/0006-3568 (2005)055[1041:OOIW]2.0.CO;2

Allendorf, F.W.; Luikart, G. 2009. Conservation and the genetics of populations. John Wiley and Sons. N575.8. 602p.

Ashikaga, F.Y.; Orsi, M.L.; Oliveira, C.; Senhorini, J.A.; Foresti, F. 2015. The endangered species Brycon orbignyanus: genetic analysis and definition of priority areas for conservation. Environmental Biology of Fishes,
98(7): 1845-185. http://dx.doi.org/10.1007/s10641-015-0402-8

Baigún, C.; Minotti, P.; Oldani, N. 2013. Assessment of sábalo (Prochilodus lineatus) fisheries in the lower Paraná River basin (Argentina) based on hydrological, biological, and fishery indicators. Neotropical Ichthyology,11(1): 199-210. http://dx.doi.org/10.1590/S1679-62252013000100023

Barbosa, A.C.; Galzerani, F.; Corrêa, T.C.; Galetti Jr, P. M.; Hatanaka, T. 2008. Description of novel microsatellite loci in the Neotropical fish Prochilodus argenteus and cross-amplification in P. costatus and P. lineatus. Genetics and Molecular Biology, 31(1): 357-360. http:// dx.doi.org/10.1590/S1415-47572008000200032

Barbosa, A.C.; Correa, T.C.; Galzerani, F.; Galetti Jr, P.M.; Hatanaka, T. 2006.Thirteen polymorphic microsatellite loci in the Neotropical fish Prochilodus argenteus (Characiformes, Prochilodontidae). Molecular Ecology Notes,
6(3): 936-938. http://dx.doi.org/10.1590/S1415-47572008000200032

Bondioli, A.C.V.; Marques, R.C.; Toledo, L.F.A.; Barbieri, E. 2017. PCRRFLP for identification of the pearl oyster Pinctada imbricate from Brazil and Venezuela. Boletim do Instituto de Pesca, 43(4): 459-463.http://dx.doi.org/10.20950/1678-2305.2017v43n3p459

Braga-Silva, A.; Galetti, P.M. 2016. Evidence of isolation by time in freshwater migratory fish Prochilodus costatus (Characiformes, Prochilodontidae). Hydrobiologia, 765 (1): 159-167. https://doi.org/10.1007/s10750-015-2409-8

Calcagnotto, D.; Schaefer, S. A.; DeSalle, R. 2005. Relationships among characiform fishes inferred from analysis of nuclear and mitochondrial gene sequences. Molecular Phylogenetics and Evolution, 36(1): 135-
153. https://doi.org/10.1016/j.ympev.2005.01.004

Carvalho-Costa, L.F.; Hatanaka, T.; Galetti Jr, P.M. 2008. Evidence of lack of population substructuring in the Brazilian freshwater fish Prochilodus costatus. Genetics and Molecular Biology, 31(1): 377-380. http:// dx.doi.org/10.1590/S1415-47572008000200036

Castro, R.M.P.; Vari, R.P. 2004. Detritivores of the South American fish family Prochilodontidae (Teleostei: Ostariophysi: Characiformes):a phylogenetic and revisionary study. Smithsonian Contributions to Zoology, 622: 1í 90. https://doi.org/10.5479/si.00810282.622

Castro, R.M.C.; Vari, R.P. 2003. Family Prochilodontidae. Check List of the Freshwaters of South and Central America. EDIPUCRS, 1: 65-70.

de Oliveira, R.C.; Santos, M.D.C.F.; Bernardino, G.; Hrbek, T.; Farias, I.P. 2018. From river to farm: an evaluation of genetic diversity in wild and aquaculture stocks of Brycon amazonicus (Spix and Agassiz, 1829),Characidae, Bryconinae. Hydrobiologia, 805(1): 75-88. https://doi.org/10.1007/s10750-017-3278-0

Do, C.; Waples, R.S.; Peel, D.; Macbeth, G.M.; Tillett, B.J.; Ovenden,J.R. 2014. NeEstimator v2: re‐implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Molecular Ecology Resources, 14(1:09-214. https://doi.org/10.1111/1755-0998.12157

Duong, T.Y.; Scribner, K.T. 2018. Regional variation in genetic diversity between wild and cultured populations of bighead catfish (Clarias macrocephalus) in the Mekong Delta. Fisheries Research, 207: 118-125. https://doi.org/10.1016/j.fishres.2018.06.012

Doyle, R.W. 2016. Inbreeding and disease in tropical shrimp aquaculture: a reappraisal and caution. Aquaculture research, 47(1): 21-35. https:// doi.org/10.1111/are.12472

Earl, D.A. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2): 359-361. https://doi. org/10.1007/s12686-011-9548-7

Espinach Ros, A.; Sverlij, S.; Amestoy, F.; Spinetti, M. 1998. Migration pattern of the sábalo Prochilodus lineatus (Pisces, Prochilodontidae) tagged in the lower Uruguay River. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen, 26(5):2234-2236. https://doi.org/10.1080/03680770.1995.11901143

Evanno, G.; Regnaut, S.; Goudet, J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study.Molecular Ecology, 14(8): 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

Excoffier, L.; Lischer, H.E. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular ecology resources, 10(3): 564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

Falush, D.; Stephens, M.; Pritchard, J.K. 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164(4): 1567-1587. https://doi. org/10.1111/j.1471-8286.2007.01758.x

Ferreira, D.G.; Souza-Shibatta, L.; Shibatta, O.A.; Sofia, S. H.; Carlsson,J.; Dias, J.H.P.; Makrakis, S.; Makrakis, M.C. 2017. Genetic structure and diversity of migratory freshwater fish in a fragmented Neotropical river system. Reviews in Fish Biology and Fisheries, 27(1): 209-231.

https://doi.org/10.1007/s11160-016-9441-2

Fonseca, F. S.; Domingues, R.R.; Hallerman, E.M.; Hilsdorf, A.W. 2017. Genetic diversity of an imperiled Neotropical catfish and recommendations for its restoration. Frontiers in genetics, 8: 196.http://dx.doi.org/10.3389/fgene.2017.00196

Frankham, R. 2008. Genetic adaptation to captivity in species conservation programs. Molecular Ecology, 17(1): 325-333. https://doi.org/10.1111/j.1365-294X.2007.03399.x

Garcez, R.; Calcagnotto, D.; De Almeida‐Toledo, L.F. 2011. Population structure of the migratory fish Prochilodus lineatus (Characiformes) from Rio Grande basin (Brazil), an area fragmented by dams. Aquatic Conservation: Marine and Freshwater Ecosystems, 21(3): 268-275.https://doi.org/10.1002/aqc.1176

Goudet, J. 2001. FSTAT, a program to estimate and test gene diversities and fixation indices, version 2.9. 3. Disponí­­vel em: http://www2.unil.ch/popgen/softwares/fstat.htm.

Hashimoto, D.T.; Prado, F.D.; Senhorini, J.A.; Foresti, F.; Porto-Foresti, F. 2014. Aquaculture of Neotropical catfish hybrids: genetic strategies for conservation and management. In Carp and Catfish: Biology, Behavior and Conservation Strategies (Regan, B., ed), pp. 1-10. NovaScience Publishers, New York.

Hashimoto, D.T.; Senhorini, J.A.; Foresti, F.; Martí­­nez, P.; Porto-Foresti, F. 2014. Genetic identification of F1 and post-F1 Serrasalmid juvenile hybrids in Brazilian aquaculture. PloS one, 9(3): e89902. https://doi.org/10.1371/journal.pone.0089902

Hedrick, P.W. 2005. A standardized genetic differentiation measure. Evolution,59(8): 1633-1638. https://doi.org/10.1111/j.0014-3820.2005.tb01814.x

Hoeinghaus, D.J.; Agostinho, A.A.; Gomes, L.C.; Pelicice, F.M.; Okada,E.K.; Latini, J.D.; ... Winemiller, K.O. 2009. Effects of river impoundment on ecosystem services of large tropical rivers: embodied energy and market value of artisanal fisheries. Conservation Biology,23(5): 1222-1231. https://doi.org/10.1111/j.1523-1739.2009.01248.x

IBAMA. Instituto brasileiro do meio ambiente e dos recursos naturais renováveis. Instrução Normativa Nº- 146, De 10 de Janeiro De 2007. Disponí­­vel em: http://www.icmbio.gov.br/sisbio/images/stories/
instrucoes_normativas/IN146_2007_Empreendimentos.pdf

Jombart, T.; Devillard, S.; Balloux, F. 2010. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC genetics, 11(1): 94.

Kalinowski, S.T.; Taper, M. L.; Marshall T. C. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16: 1099í 1106. http://dx.doi.org/10.1111/j.1365-294X.2007.03089.x

Kessing, B.; Croom, H.; Martin, A.; McIntosh, C.; Mcmillan, W.O.;Palumbi, S. 1989. The simple fool’s guide to PCR. University of Hawaii, Honolulu. 45p.

Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.Journal of Molecular Evolution, 16(2): 111-120.

Librado, P.; Rozas, J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11): 1451- 1452. http://dx.doi.org/10.1093/bioinformatics/btp187

Meyer, A.; Biermann, C.H.; Orti, G. 1993. The phylogenetic position of the zebrafish (Danio rerio), a model system in developmental biology: an invitation to the comparative method. Proceedings of the Royal Society of London. Series B: Biological Sciences, 252(1335): 231-236. http://dx.doi.org/10.1098/rspb.1993.0070

Oliveira, C.; Avelino, G.S.; Abe, K.T.; Mariguela, T.C;, Benine, R.C.; Ortí­­, G.;...;Castro, R.M. C. 2011. Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling. BMC Evolutionary Biology, 11(1): 275. https://doi.org/10.1186/1471-2148-11-275

Pereira, L.H.G.; Foresti, F.; Oliveira, C. 2009. Genetic structure of the migratory catfish Pseudoplatystoma corruscans (Siluriformes: Pimelodidae) suggests homing behaviour. Ecology of Freshwater Fish,18(2): 215-225. https://doi.org/10.1111/j.1600-0633.2008.00338.x

Prado, F.D.; Vera, M.; Hermida, M.; Blanco, A.; Bouza, C.; Maes, G.E.; ...;AquaTrace Consortium. 2018. Tracing the genetic impact of farmed turbot Scophthalmus maximus on wild populations. Aquaculture Environment
Interactions, 10: 447-463. http://dx.doi.org/10.3354/aei00282

Pritchard, J.K.; Stephens, M.; Rosenberg, N.A.; Donnelly, P. 2000. Association mapping in structured populations. The American Journal of Human Genetics, 67(1): 170-181. https://doi.org/10.1086/302959

Raymond, M.; Rousset, F. 1995. An exact test for population differentiation.Evolution, 49(6): 1280-1283.

Ribolli, J.; Zaniboni-Filho, E. 2009. Individual contributions to pooledmilt fertilizations of silver catfish Rhamdia quelen. Neotropical Ichthyology, 7(4): 629-634. http://dx.doi.org/10.1590/S1679-62252009000400011

Ribolli, J.; Mino, C.I.; Zaniboni-Filho, E.; de Souza Guerreiro, T.C.; ReynalteTataje, D.A.; de Freitas, P.D.; Galetti, P.M. 2016. Preliminary insights into the genetic mating system of Neotropical Salminus brasiliensis: kinship assignment and parental reconstruction reveal polygynandry. Ichthyological Research, 63(1): 187-191. http://dx.doi.org/10.1007/s10228-015-0487-2

Ribolli, J.; Scaranto, B.M.; Shibatta, O.A; Bombardelli, R.A.; ZaniboniFilho, E. 2017. DNA barcoding confirms the occurrence of Rhamdia branneri and Rhamdia voulezi (Siluriformes: Heptapteridae) in the Iguaçu River Basin. Neotropical Ichthyology, 15(1). http://dx.doi.org/10.1590/1982-0224-20160147

Ribolli, J.; Zaniboni-Filho, E.; Freitas, P.D.; Galetti, P.M. 2018. Genetic evidences of non-reproductive shoaling in the freshwater fish Salminus brasiliensis. Hydrobiologia, 815(1): 65-72. https://doi.org/10.1007/s10750-018-3550-y

Roques, S.; Berrebi, P.; Rochard, E.; Acolas, M.L. 2018. Genetic monitoring for the successful re-stocking of a critically endangered diadromous fish with low diversity. Biological Conservation,221: 91-102. http://dx.doi.org/10.1016/j.biocon.2018.02.032

Rueda, E.C.; Carriquiriborde, P.; Monzón, A.M.; Somoza, G.M.; Ortí­­, G.2013. Seasonal variation in genetic population structure of sábalo (Prochilodus lineatus) in the Lower Uruguay River. Genetica, 141(7-9): 401-407. https://doi.org/10.1007/s10709-013-9739-0

Ryman, N.; Utter, F.; Laikre, L. 1995. Protection of intraspecific biodiversity of exploited fishes. Reviews in Fish Biology and Fisheries, 5(4): 417-446.

Sambrook, J.; Russell, D. W.; Maniatis, T. 2001. Molecular cloning, vol.1-3. Cold Spring Habour Laboratory Press, New York. 2100p.

Scaranto, B.M.S.; Ribolli, J.; Zaniboni‐Filho, E. 2018. DNA barcoding reveals blend of silver catfish Rhamdia species from fish farms in Southern Brazil. Aquaculture Research, 49(5): 1907-1913. https://doi.org/10.1111/are.13646

Schork, G.; Hermes-Silva, S.; Zaniboni-Filho, E. 2013. Analysis of fishing activity in the Itá reservoir, Upper Uruguay River, in the period 2004-2009. Brazilian Journal of Biology, 73(3): 559-571. http://dx.doi.org/10.1590/S1519-69842013000300014

Sivasundar, A.; Bermingham, E.; Ortí­­, G. 2001. Popula tion structure and biogeography of migratory freshwater fishes (Prochilodus:Characiformes) in major South American rivers. Molecular Ecology,10(2): 407-417. https://doi.org/10.1046/j.1365-294X.2001.01194.x

Small, M.P.; Currens, K.; Johnson, T.H., Frye, A.E.; Von Bargen, J.F. 2009.Impacts of supplementation: genetic diversity in supplemented and unsupplemented populations of summer chum salmon (Oncorhynchus
keta) in Puget Sound (Washington, USA). Canadian Journal of Fisheries and Aquatic Sciences, 66(8): 1216-1229. https://doi.org/10.1139/F09-068

Sverlij, S. B. 1993. Sinopsis de los datos biológicos y pesqueros del sábalo,Prochilodus lineatus (Valenciennes, 1847) (No. 154). Food and Agriculture Org. 64p.

Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.;Kumar, S. 2011.MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.
Molecular Biology and Evolution, 28(10): 2731-2739.

Tave, D. 1999. Inbreeding and brood stock management (No. 392). Food and Agriculture Org.

Thompson, J.D.; Higgins, D.G.; Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22): 4673-4680.

Vaini, J.O.; do Amaral Crispim, B.; dos Santos Silva, D.B.; Benites, C.; Russo, M.R.; Grisolia, A.B. 2016. Genetic variability of pure Pseudoplatystoma corruscans and Pseudoplatystoma reticulatum individuals in the Paraná and Paraguay River basins. Fisheries Science, 82(4): 605-611. http://dx.doi.org/10.1007/s12562-016-0999-3

Van Oosterhout, C.; Hutchinson, W.F.; Wills, D.P.; Shipley, P. 2004. MICRO‐CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4(3): 535-538.https://doi.org/10.1111/j.1471-8286.2004.00684.x

Viveiros, A.T.M.; Nascimento, A.F.; Orfão, L.H.; Isaú, Z.A. 2010. Motility and fertility of the subtropical freshwater fish streaked prochilod (Prochilodus lineatus) sperm cryopreserved in powdered coconut water. Theriogenology, 74(4): 551-556.

Waples, R.S.; Do, C. 2008. LDNE: a program for estimating effective population size from data on linkage disequilibrium. MolecularEecology Resources 8:753í 756. https://doi.org/10.1111/j.1755-0998.2007.02061.x

Ward, R.D. 2006. The importance of identifying spatial population structure in restocking and stock enhancement programmes. Fisheries Research,80(1): 9-18.

Weir, B.S.; Cockerham, C.C. 1984. Estimating F‐statistics for the analysis of population structure. Evolution, 38(6): 1358-1370.

Yazbeck, G.M.; Kalapothakis, E. 2007. Isolation and characterization of microsatellite DNA in the piracema fish Prochilodus lineatus (Characiformes). Genetics and Molecular Research, 6(4): 1026-1034.

Zaniboni-Filho E.; Schulz, U.H. 2003. Migratory fishes of the Uruguay River. In: Carolsfeld J.; Harvey,B.; Baer, A.; Ross,C. (eds). In: Migratory fishes of South America: biology, fisheries and conservation status. International Development Research Centre and the World Bank. Victoria, Canada. p. 157-194

Downloads

Publicado

2019-09-02

Edição

Seção

Artigo cientí­fico