Idade e crescimento do bonito-listrado (Katsuwonus pelamis) no Atlí­¢ntico Oeste Equatorial com base na análise dos espinhos dorsais

Autores

DOI:

https://doi.org/10.20950/1678-2305/bip.2022.48.e686

Palavras-chave:

growth equation;, growth models;, growth parameters;, multi-model inference;, pelagic fish.

Resumo

O bonito-listrado (Katsuwonus pelamis) é um peixe pelágico migratório que ocorre em todos os oceanos tropicais e subtropicais do mundo. Devido í­Â  sua importí­¢ncia econômica e ao aumento desenfreado do esforço de pesca, os estoques podem entrar em colapso se este recurso não for manejado adequadamente. O presente estudo teve como objetivo estimar parí­¢metros de crescimento para diferentes modelos baseados nos anéis etários formados nos espinhos dorsais do bonito-listrado capturado no Atlí­¢ntico Oeste Equatorial. O primeiro espinho dorsal de cada indiví­­duo foi extraí­­do para produzir cortes transversais com 0,6 a 0,8 mm de espessura. Utilizamos uma abordagem de múltiplos modelos para selecionar o melhor modelo de crescimento com base no critério de informação de Akaike (AIC). Foram analisados â€"¹â€"¹277 indiví­­duos, com comprimento médio de 49,58 ± 7,72 cm. O modelo de crescimento de von Bertalanffy teve o melhor ajuste aos dados, mas os modelos de Gompertz e Logí­­stico também tiveram um suporte essencial. O comprimento assintótico médio () foi estimado em 114,05 e 102,63 cm para dados observados e retrocalculados, respectivamente. Os espinhos dorsais são de fato ferramentas eficientes para estimativa dos parí­¢metros de crescimento e a inferência de multi-modelos é uma nova abordagem para ajustar as discrepí­¢ncias que provavelmente resultam de uma abordagem com base em um único modelo.

Referências

Abramoff, M.D.; Magalhaes, P.J.; Ram, S.J. 2004. "Image Processing with ImageJ". Biophotonics International, 11(7): 36-42.

Adams, J.L.; Kerstetter, D.W. 2014. Age and growth of three coastal-pelagic tunas (Actinopterygii: Perciformes: Scombridae) in the Florida Straits, USA: blackfin tuna, Thunnus atlanticus, little tunny, Euthynnus alletteratus, and skipjack tuna, Katsuwonus pelamis. Acta Ichthyologica et Piscatoria, 44(3): 201-211. https://doi.org/10.3750/AIP2014.44.3.04.

Akaike H. 1998. Information Theory and an Extension of the Maximum Likelihood Principle. In: Parzen E.; Tanabe K.; Kitagawa G. (eds) Selected Papers of Hirotugu Akaike. Springer Series in Statistics (Perspectives in Statistics). Springer, New York. pp.199-213. https://doi.org/10.1007/978-1-4612-1694-0_15.

Andrade, H.A.; Abreu-Silva, J.L.; Duarte-Pereira, M. 2004. Crescimento do bonito listrado (Katsuwonus pelamis) e um método para a correção de ví­­cios decorrentes da vascularização central dos espinhos das nadadeiras dorsais. Notas Técnicas da FACIMAR, 8: 83-93. https://doi.org/10.14210/bjast.v8n1.p83-93.

Bard, F.X.; Antoine, L. 1986. Croissance du listao dans l’Atlantique Est. Proc. ICCAT conference on the international skipjack year program, Madrid. 301-308. Available at: <https://www.iccat.int/Documents/CVSP/SJ001_1986/SJYrProg01.html>. Accessed: Aug. 21, 2021.

Burnham, K.P.; Anderson, D.R. 2002. Model selection and multimodel inference: a practical information-theoretic approach. 2nd ed., Springer, New York. 488p.

Campos, R.O.; Andrade, H.A. 1998. Uma metodologia para estimativa de captura por área de pesca a partir de dados pouco informativos: o caso da pescaria de bonito listrado (Katsuwonus pelamis) na costa do Brasil. Notas Técnicas da FACIMAR, 2(1): 61-69. https://doi.org/10.14210/bjast.v2n1.p61-69.

Cayré, P.; Diouf, T.; Fonteneau, A. 1986. Analyse des données de marquages et recaptures de listao (Katsuwonus pelamis) réalisés par le Sénégal et la République du Cap-Vert. Proc. ICCAT conference on the international skipjack year program, Madrid. 309-316. Available at: <https://www.iccat.int/Documents/CVSP/SJ001_1986/SJYrProg01.html>. Available at: Aug. 21, 2021.

Chang, W.Y.B. 1982. A statistical method for evaluating the reproducibility of age determination. Canadian Journal of Fisheries and Aquatic Sciences, 39(8): 1208-1210. https://doi.org/10.1139/f82-158.

Collette, B.B.; Nauen, C.E. 1983. FAO Species catalogue. Vol. 2. Scombrids of the world: an annotated and illustrated catalogue of tunas, mackerels, bonitos, and related species known to date. FAO Fisheries Synopsis, 125(2): 137p. Available at: <https://www.fao.org/3/ac478e/ac478e00.htm> Accessed: Apr. 16, 2021.

Duarte-Neto, P.; Higa, F.M.; Lessa, R.P. 2012. Age and growth estimation of bigeye tuna Thunnus obesus (Teleostei; Scombridae) in the southwestern Atlantic. Neotropical Ichthyology, 10(1): 149-158. https://doi.org/10.1590/S1679-62252012000100014.

FAO - Food and Agriculture Organization. 2020. The State of World Fisheries and Aquaculture 2020: Sustainability in action. Rome. 224p. Available at: <https://www.fao.org/3/ca9229en/ca9229en.pdf>. Accessed: Nov. 11, 2021.

Farley, J.H.; Williams, A.J.; Clear, N.P.; Davies, C.R.; Nicols, S.J. 2013. Age estimation and validation for South Pacific albacore Thunnus alalunga. Journal of Fish Biology, 82(5): 1523-1544. https://doi.org/10.1111/jfb.12077.

Fowler, A.J. 1990. Validation of annual growth increments in the otoliths of a small, tropical coral reef fish. Marine Ecology Progress Series, 64: 25-38. https://doi.org/10.3354/meps064025.

Francis, R. 1990. Back-calculation of fish length: a critical review. Journal of Fish Biology, 36(6): 883-902. https://doi.org/10.1111/j.1095-8649.1990.tb05636.x.

Gaertner, D.; Molina, A.D.; Ariz, J.; Pianet, R.; Hallier, J.P. 2008. Variability of the growth parameters of skipjack tuna (Katsuwonus pelamis) among areas in the eastern Atlantic: analysis from tagging data within a meta-analysis approach. Aquatic Living Resources, 21(4): 349-356. https://doi.org/10.1051/alr:2008049.

Garbin, T.; Castello, J.P. 2014. Changes in population structure and growth of skipjack tuna, Katsuwonus pelamis during 30 years of exploitation in the southwestern Atlantic. Latin American Journal of Aquatic Research, 42(3): 434-446.

Gompertz, B. 1825. On the nature of the function expressive of the law of human mortality and on a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society of London, 115: 515-585. https://doi.org/10.1098/rstl.1825.0026.

Hallier, J.P.; Gaertner, D. 2006. Estimated growth rate of the skipjack tuna (Katsuwonus pelamis) from tagging surveys conducted in the Senegalese area (1996-1999) within a meta-analysis framework. Collective Volume of Scientific Papers ICCAT, 59: 411-420.

ICCAT - International Commission for the Conservation of Atlantic Tuna. 2016. ICCAT Manual. In: ICCAT Publications. [online]. URL: <https://www.iccat.int/en/iccatmanual.html>. Accessed: Jun. 13, 2021.

ICCAT - International Commission for the Conservation of Atlantic Tuna. 2019. SCRS Report. Executive Summary of the Standing Committee on Research and Statistics (SCRS). [online] URL: <https://www.iccat.int/Documents/SCRS/ExecSum/SKJ_ENG.pdf>. Accessed: Dec. 03, 2021.

Katsanevakis, S. 2006. Modelling fish growth: Model selection, multi-model inference and model selection uncertainty. Fisheries Research, 81(2-3): 229-235. https://doi.org/10.1016/j.fishres.2006.07.002.


Lessa, R.P.; Duarte-Neto, P. 2004. Age and growth of yellowfin tuna (Thunnus albacares) in the western equatorial Atlantic, using dorsal fin spines. Fisheries Research, 69(2): 157-170. https://doi.org/10.1016/j.fishres.2004.05.007.

Madureira, L.A.S.P.; Monteiro-Neto, C. 2020. Sustentabilidade da pesca do bonito-listrado no Brasil. 1ª ed. Walprint Gráfica e Editora, Rio de Janeiro. 256p.

Molony, B. 2008. Fisheries biology and ecology of highly migratory species that commonly interact with industrialized longline and purse-seine fisheries in the Western and Central Pacific Ocean. Western and Central Pacific Fisheries Commission (WCPFC). Scientific Committee Regular Session, Papua New Guinea. 228p. Available at: <https://www.spc.int/DigitalLibrary/Doc/FAME/Meetings/WCPFC/SC4/EB-IP-6.html>. Accessed: Nov. 16, 2021.

Munro, J.L.; Pauly, D. 1983. A simple method for comparing the growth of fishes and invertebrates. Fishbyte, 1(1): 5-6.

Murua, H.; Rodriguez-Marin, E.; Neilson, J.D.; Farley, J.H.; Juan-Jordá, M.J. 2017. Fast versus slow growing tuna species: age, growth, and implications for population dynamics and fisheries management. Reviews in Fish Biology and Fisheries. 27: 733-773. https://doi.org/10.1007/s11160-017-9474-1.

Nobrega, M.F.; Lessa, R.P. 2009. Age and growth of the king mackerel (Scomberomorus cavalla) off the Northeastern Coast of Brazil. Brazilian Journal of Oceanography, 57(4): 273-285. https://doi.org/10.1590/S1679-87592009000400003.

R Development Core Team. 2017. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. [online] URL: <https://cran.r-project.org/bin/windows/base/old/3.4.3/>. Accessed: Mar. 15, 2021.
Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Bulletin of the Fisheries Research Board of Canada, 191: 1-382.

Silva, G.B.; Hazin, H.G.; Mourato, B.L.; Hazin, F.H.V.; Fonteles-Filho, A.A. 2016. Composição das capturas na pesca de atuns e afins em cardumes associados no Atlí­¢ntico Oeste Equatorial. Boletim do Instituto de Pesca, 42: 866-877. https://doi.org/10.20950/1678-2305.2016v42n4p866.

Silva, G.B.; Hazin, H.G.; Araújo, P.V.N. 2018. Fishing operations to catch tuna on aggregated schools at the vicinity of a data buoy in the Western Equatorial Atlantic. Brazilian Journal of Oceanography, 66(4): 335-338. https://doi.org/10.1590/S1679-87592018018206604.

Silva, G.B.; Hazin, H.G.; Hazin, F.H.V.; Travassos, P. 2019. The tuna fisheries in associated schools in Brazil: description and trends. Collective Volume of Scientific Papers ICCAT. 75(7): 1924-1934.

Soares, B.J.; Monteiro-Neto, C.; Costa, M.R.; Martins, R.R.M.; Vieira, F.C.S.; Andrade-Tubino, M.F.; Bastos, A.L.; Tubino, R.A. 2019. Size structure, reproduction, and growth of skipjack tuna (Katsuwonus pelamis) caught by the pole-and-line fleet in the southwest Atlantic. Fisheries Research, 212: 136-145. https://doi.org/10.1016/j.fishres.2018.12.011.

Sun, C.L.; Huang, C.L.; Yeh, S.Z. 2001. Age and growth of bigeye tuna, Thunnus obesus, in the Western Pacific Ocean. Fishery Bulletin, 99(3): 502-509.

Uchiyama, J.H.; Struhsaker, P. 1981. Age and growth of skipjack tuna, Katsuwonus pelamis, yellowfin tuna, Thunnus albacares, and albacore, Thunnus alalunga, as indicated by daily growth increments of sagittae. Fishery Bulletin, 79: 151-162.

Vilela, M.J.A.;Castello, J.P. 1991. Estudio de la edad y del crecimiento del barrilete Katsuwonus pelamis, en la region Sur y Sudeste de Brasil. Frente Maritimo, 9: 29-35.

von Bertalanffy, L. 1938. A quantitative theory of organic growth. Human Biology, 10(2): 181-213. https://www.jstor.org/stable/41447359.

Downloads

Publicado

2022-05-20

Edição

Seção

Artigo cientí­fico

Artigos mais lidos pelo mesmo(s) autor(es)