THE INTENSIVE CULTURE OF NILE TILAPIA SUPPLEMENTED WITH THE MICROALGAE Chlorella vulgaris IN A BIOFLOC SYSTEM

Authors

  • Marcele Trajano de Araújo Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura
  • Ítalo Felipe Mascena Braga Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura
  • Santiago Vega Cisneros Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura
  • Suzianny Maria Bezerra Cabral da Silva Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura
  • Alfredo Olivera Galvez Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura
  • Eudes de Souza Correia Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura

DOI:

https://doi.org/10.20950/1678-2305.2019.45.2.398

Keywords:

fingerlings culture, biofloc system, live food, phytoplankton, hematological indices

Abstract

The aim of this study was to evaluate the performance of Nile tilapia fingerlings cultured in biofloc technology using different inoculation densities of Chlorella vulgaris. The experimental design was completely randomized with biofloc system and four densities of Chlorella vulgaris (0, 2.5, 5 and 10 x 104 cell mL-1), each with four replications. The study lasted 63 days and was carried out in tanks with a working volume of 40L, at a stocking density of 10 fish per experimental unit and a mean initial weight of approximately 1.86 g. The water quality variables showed no significant difference between treatments, especially total ammonia nitrogen and nitrite nitrogen, which were within acceptable levels for culture of the species. The variables of zootechnical performance were not affected by the different inoculation densities of the microalgae, achieving a final mean weight of approximately 21 g for all treatments, and survival rates greater than 80%. The weekly inoculation densities of the microalgae Chlorella vulgaris therefore had no influence on the growth of tilapia fingerlings cultured in a biofloc system.

References

Abdel-Tawwab, M.; Ahmad, M.H.; Khattab, Y.A.E.; Shalaby, A.M.E. 2010. Effect of dietary protein level, initial body weight, and their interaction on the growth, feed utilization, and physiological alterations of Nile tilapia, Oreochromis niloticus. Aquaculture, 298(3): 267-274. https://doi.org/10.1186/2008-6970-4-3

Abduljabbar, A.A.; Nour, A.M.; Srour, T.; El-Bermawy, N.; Fayed, W.A.; Mansour, A.T. 2015. Intensive Nile tilapia (Oreochromis niloticus) production under biofloc technology systems. Global Journal of Fisheries and Aquaculture Researches, 2(1): 64-80.

American Public Health Association í  APHA. 1995. Standard methods for the examination of water and wastewater. 19ª ed. Washington: APHA.

Avnimelech, Y. 2009. Biofloc Technology í  A Practical Guide Book. Louisiana: The World Aquaculture Society, 175p.

Azevedo, T.M.P.; Martins, M.L.; Yamashita, M.M.; Francisco, C.J. 2006. Hematologia de Oreochromis niloticus: comparação entre peixes mantidos em piscicultura consorciada com suí­­nos e em pesque-pague no Vale do rio Tijucas, Santa Catarina, Brasil. Boletim Instituto da Pesca, 32(1): 41-49.

Azevedo, T.M.P.; Albinati, R.C.B.; Guerra-Santos, B.; Pinto, L.F.B.; Lira, A.D.; Medeiros, S.D.C.; Ayres, M.C.C. 2016. Valores de referência dos parí­¢metros hematológicos de Oreochromis niloticus (Linaeus, 1758) cultivados em tanques-rede em Paulo Afonso, no estado da Bahia, Brasil. Brazilian Journal of Aquatic Science and Technology, 20(2): 63-74. http://dx.doi.org/10.14210/bjast.v20n2.4588

Azim, M.E.; Verdegem, M.C.J.; Mantingh, I.; Van Dam, A.A.; Beveridge, M.C.M. 2003. Ingestion and utilization of periphyton grown on artificial substrates by Nile tilapia, Oreochromis niloticus L. Aquaculture Research, 34(1): 85í 92. https://doi.org/10.1046/j.1365-2109.2003.00802.x

Azim, M.E.; Little, D.C. 2008. The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283(1-4): 29-35. https://doi.org/10.1016/j.aquaculture.2008.06.036

Becker, E.W. 1994. Microalgae: biotechnology and microbiology. New York: Cambridge University Press, 293p.

Bosisio, F.; Rezende, K.F.O.; Barbieri, E . 2017. Alterations in the hematological parameters of Juvenile Nile Tilapia (Oreochromis niloticus) submitted to different salinities. Pan-American Journal of Aquatic Sciences, 12(2) 146-154.

Branyikova, I.; Marsalkova, B.; Doucha, J.; Branyik, T.; Bisova, K.; Zachleder, V.; Vitova, M. 2010. Microalgae í  novel highly efficient starch producers. Biotechnology Bioengineering, 108(4): 766í 776. https://doi.org/10.1002/bit.23016

Brennan, L.; Owende, P. 2010. Biofuels from microalgae - A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2): 557í 577. https://doi.org/10.1016/j.rser.2009.10.009

Brol, J.; Pinho, S.M.; Sgnaulin, T.; Pereira, K.R.; Thomas, M.C.; Mello, G.L.; Miranda-Baeza, A.; Emerenciano, M.G.C. 2017. Tecnologia de bioflocos (BFT) no desempenho zootécnico de tilápias: efeito da linhagem e densidades de estocagem. Archivos de Zootecnia, 66(254): 229-235.

Burford, M.A.; Thompson, P.J.; Mcintosh, R.P.; Bauman, R.H.; Pearson, D.C. 2003. Nutrient and microbial dynamics in high-intensity, zero-exchange shrimp ponds in Belize. Aquaculture, 219(1-4): 393-411. https://doi.org/10.1016/S0044-8486(02)00575-6.

Burford, M.A.; Smith, D.M.; Tabret, S.J.; Coman, F.E.; Thompson, P.J.; Barclay, M.C.; Toscas, P.J. 2004. The effect of dietary protein on the growth and survival of the shrimp, Penaeus monodon in outdoor tanks. Aquaculture Nutrition, 10(1): 15í 23. https://doi.org/10.1046/j.1365-2095.2003.00274.x

Cameron, J.N. 1971. Methemoglobin in erythrocytes of rainbow trout. Comparative Biochemistry and Physiology, 40(3): 743-749. https://doi.org/10.1016/0300-9629(71)90259-3

Choo, H.X.; Caipang, C.M.A. Biofloc technology (BFT) and its application towards improved production in freshwater tilapia culture. 2015. Aquaculture, Aquarium, Conservation & Legislation International Journal of the Bioflux Society, 8(3): 362-366.

Dempster, P.; Baird, D.J.; Beveridge, M.C.M. 1995. Can fish survive by filter-feeding on microparticles? Energy balance in tilapia grazing on algal suspension. Journal of Fish Biology, 47(1): 7í 17. https://doi.org/10.1111/j.1095-8649.1995.tb01868.x

El-Sherif, M.S.; El-Feky, A.M. 2008. Effect of ammonia on Nile Tilapia (O. niloticus) performance and some hematological and histological measures. Disponí­­vel em: <https://pdfs.semanticscholar.org/5168/9619b7925f21a10f066551324c3df38ab798.pdf>Acesso em: 30 nov. 2017.

Ebeling, J.M; Timmons, M.B; Bisogni, J.J. 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic control of ammonia-nitrogen in aquaculture production systems. Aquaculture, 257(1-4): 346í 358. https://doi.org/10.1016/j.aquaculture.2006.03.019

Emerenciano, M.; Gaxiola, G.; Cuzon, G. 2013. Biofloc Technology (BFT): A Review for Aquaculture Application and Animal Food Industry, Biomass Now â€" Cultivation and Utilization. Disponí­­vel em: <https://www.intechopen.com/books/biomass-now-cultivation-and-utilization/biofloc-technology-bft-a-review-for-aquaculture-application-and-animal-food-industry> Acesso em: 24 nov. 2017.

Emerenciano, M.G.C.; Martí­­nez-Córdova, L.F.; Porchas, M.M.; Baeza, A.M. 2017. Biofloc Technology (BFT): A Tool for Water Quality Management in Aquaculture. Disponí­­vel em: <https://www.intechopen.com/books/water-quality/biofloc-technology-bft-a-tool-for-water-quality-management-in-aquaculture> Acesso em: 06 dez. 2017.

Furuya, W.M.; Michelato, M.; Graciano, T.S.; Vidal, L.V.O.; Xavier, T.O.; Furuya, V.R.B., Moura, L.B. 2013. Digestible lysine requirement of Nile tilapia from 86 to 227g fed arginine to lysine balanced diets. Semina: Ciências Agrárias, 34(4): 1945-1954. http://dx.doi.org/10.5433/1679-0359.2013v34n4p1945

Goldenfarb, P.B.; Bowyer, F.P.; Hall, E. 1971. Reproductibility in the hematology laboratory: the micro hematocrit determination. American Journal of Clinical Pathology, 56(1): 35-39.

Green, B.W. 2006. Tilapia: biology, culture, and nutrition. In: Lim, C.; Webster, C.D. Fingerling Production Systems. New York: Food Products Press. p. 181-202.

Hopkins, J.S., Hamilton II, R.D.; Sandier, P.A.; Browdy, C.L.; Stokes, A.D. 1993. Effect of water exchange rate on production, water quality, effluent characteristics and nitrogen budgets of intensive shrimp ponds. Journal of the World Aquaculture Society, 24(3): 304-320. https://doi.org/10.1111/j.1749-7345.1993.tb00162.x

Juarez, L.M.; Moss, S.M.; Figueras, E. 2010. The Shrimp Book, Maturation and larval rearing of the pacific white shrimp, Penaeus vannamei. Nottingham: Nottingham University Press. p. 305-352.

Kay, R.A. 1991. Microalgae as Food and Supplement. Critical Reviews in Food Science and Nutrition, 30(6): 555-573. https://doi.org/10.1080/10408399109527556

Kroupova, H.; Machova, J.; Svobodova, Z. 2005. Nitrite influence on fish: a review. Veterinarni Medicina í  Czech, 50(11): 461í 471.

Krummenauer, D.; Seifert Jr., C.A.; Poersch, L.H.; Foes, G.K.; Lara, G.R.; Wasielesky Jr., W. 2012. Cultivo de camarões marinhos em sistema de bioflocos: análise de reutilização da água. Atlí­¢ntica, 34(2): 103-111. https://doi.org/10.5088/atlí­¢ntica.v34i2.3118

Kuhn, D.; Smith, S.A.; Boardman, G.D.; Angier, M.W.; Marsh, M.; Flick Jr, G.J. 2010. Chronic toxicity of nitrate to Pacific white shrimp, Litopenaeus vannamei: impacts on survival, growth, antenna e length, and pathology. Aquaculture, 309(1-4): 109-114. https://doi.org/10.1016/j.aquaculture.2010.09.014

Lee, T.L.C.; Marino, G.E.G. 2010. Microalgae for "healthy” foods possibilities and challenges. Comprehensive Reviews in Food Science and Food Safety, 9(6): 655í 675. https://doi.org/10.1111/j.1541-4337.2010.00132.x

Long, L.; Yang, J.; Li, Y.; Guan, C.; Wu, F. 2015. Effect of biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (O. niloticus). Aquaculture, 448 (1): 135-141. https://doi.org/10.1016/j.aquaculture.2015.05.017

Lourenço, S.O. 2006. Cultivo de microalgas marinhas: princí­­pios e aplicações. São Carlos: Ri Ma. p. 606.

Luo, G.; Avnimelech, Y.; Pan, Y.F.; Tan, H.X. 2012. Inorganic nitrogen dynamics in sequencing Batch reactors using biofloc technology to treat aquaculture sludge. Aquacultural Engineering, 52 (1): 73-79. https://doi.org/10.1016/j.aquaeng.2012.09.003

Luo, G.; Gao, Q.; Wang, C.; Liu, W.; Sun, D.; Li, L.; Tan, H. 2014. Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture, 422í 423(1): 1í 7. https://doi.org/10.1016/j.aquaculture.2013.11.023

Miranda-Baeza, A.; Mariscal-Lopez, M.A.; Lopez-Elias, J.A.; Rivas-Veja, M.E.; Emerenciano, M.; Sanchez-Romero, A.E; Esquer-Mendez, J.L. 2017. Effect of inoculation of the cyanobacteria Oscillatoria sp. on tilapia biofloc culture. Aquaculture research, 48(9): 4725í 4734. https://doi.org/10.1111/are.13294

Monroy, M.; Lara, D.; Castro, J.; Castro, G.; Emerenciano, M. 2013. Composición y abundancia de comunidades microbianas asociadas al biofloc en un cultivo de tilapia. Revista de biologí­­a marina y oceanografia, 48(3): 511-520. https://doi.org/10.4067/S0718-19572013000300009

Moronta, R.; Mora, R.; Morales, E. 2006. Respuesta de la microalga Chlorella sorokiniana al pH, salinidad y temperatura en condiciones axénicas y no axénicas. Revista de la Facultad de Agronomí­­a, 23(1): 28-43.

Ogello, E.O.; Musa, S.M.; Aura, C.M.; Abwao, J.O.; Munguti, J.M. 2014. An Appraisal of the Feasibility of Tilapia Production in Ponds Using Biofloc Technology: A review. International Journal of Aquatic Science, 5(1): 21-39.

Ray, A.J.; Lewis, B.L.; Browdy, C.L.; Leffler, J.W. 2010. Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant-based feed in minimal exchange, super intensive culture systems. Aquaculture, 299(1-4): 89-98. https://doi.org/10.1016/j.aquaculture.2009.11.021

Rodrigues-Soares, J.P.; Jesus, G.F.A.; Gonçalves, E.L.T.; Moraes, K.N.; Chagas, E.C.; Chaves, F.C.M.; Belo, M.A.A.; Jatobá, A.; Mourií­±o, J.L.P.; Martins, M.L. 2018. Induced aerocystitis and hemato-immunological parameters in Nile tilapia fed supplemented diet with essential oil of Lippia alba. Brazilian Journal of Veterinary Research and Animal Science, 55(1): 1-12. https://doi.org/10.11606/issn.1678-4456.bjvras.2018.136717

Samocha, T.M.; Prangnell, D.I.; Hanson, T.R.; Treece, G.D.; Morris, T.C.; Castro, L.F.; Staresinic, N. 2017. Design and Operation of Super Intensive, Biofloc-Dominated Systems for Indoor Production of the Pacific White Shrimp, Litopenaeus vannameií  The Texas A&M AgriLife Research Experience. Louisiana: The World Aquaculture Society. 368p.

Silva, P.C.; Kronka, S.N.; Tavares, L.H.S.; Souza, V.L. 2002. Desempenho produtivo da tilápia do Nilo (Oreochromis niloticus L.) em diferentes densidades e trocas de água em "raceway". Acta Scientiarum Animal Sciences, 24(4): 935-941. http://dx.doi.org/10.4025/actascianimsci.v24i0.2441

Silva, M.J.S. 2013. Efeito agudo da amônia e do nitrito em tilápias Oreochromis niloticus mantidas em baixa salinidade, Minas Gerais, Brasil. Belo Horizonte. 48f. (Dissertação de Mestrado. Universidade Federal de Minas Gerais). Disponí­­vel em: < http://www.bibliotecadigital.ufmg.br/dspace/handle/1843/BUOS-9LSHK8> Acesso em: 20 nov. 2017.

Schveitzer, R.; Costódio, P.F.S.; Santo, C.M.E.; Arana, L.V.; Seiffert, W.Q.; Andreatta, E.R. 2013. Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquacultural Engineering, 56(1): 59-70. https://doi.org/10.1016/j.aquaeng.2013.04.006

Servaites, J.C; Faeth, J.L.; Sidhu, S.S. 2012. A dye binding method for measurement of total protein in microalgae. Analytical Biochemistry, 421(1): 75í 80. https://doi.org/10.1016/j.ab.2011.10.047

Tacon, A.G.J.; Cody, J.J.; Conquest, L.D.; Divakaran, S.; Forster, I.P.; Decampp, O.E. 2002. Effect of culture system on the nutrition and growth performance of Pacific white shrimp Litopenaeus vannamei (Boone) fed different diets. Aquaculture Nutrition, 8(2): 121í 137. https://doi.org/10.1046/j.1365-2095.2002.00199.x

Tavares-Dias, M. 2015. Aquicultura no Brasil novas perspectivas. In: Tavares-Dias, M. e Mariano, W. S. Parí­¢metros sanguí­­neos de referência para espécies de peixes cultivados. Pedro e João editores, São Carlos. p. 11-30.

Timmons, M.B. e Ebeling, J.M. 2007. Recirculating Aquaculture. Biofiltration. Ithaca, Nova Iorque, p. 275-318.

Wasielesky, W.; Atwood, H.; Stokes, A.; Browdy, C.L. 2006. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, 258(4): 396-403. https://doi.org/10.1016/j.aquaculture.2006.04.030

Wintrobe, M.M. 1934. Variations on the size and hemoglobin content of erythrocytes in the blood various vertebrates. Folia Haematologica, 5(1): 32-49.

Yanbo W.; Wenju Z.; Weifen L.; Zirong X. 2006. Acute toxicity of nitrite on tilapia (Oreochromis niloticus) at different external chloride concentrations. Fish Physiology and Biochemistry, 32(1): 49í 54. https://doi.org/10.1007/s10695-005-5744-2

Zapata, K.P.; Brito, L.O.; Lima, P.C.M.; Vinatea, L.A.; Galvez, A.O.; Cárdenas, J.M.V. 2017. Cultivo de alevines de tilapia en sistema biofloc bajo diferentes relaciones carbono/nitrógeno. Boletim do Instituto de Pesca, 43(3): 399-407. https://doi.org/10.20950/1678-2305.2017v43n3p399

Downloads

Published

2019-03-26

Most read articles by the same author(s)

1 2 > >>