CULTIVO INTENSIVO DA TILÁPIA DO NILO SUPLEMENTADO COM MICROALGA Chlorella vulgaris EM SISTEMA DE BIOFLOCOS

Autores

  • Marcele Trajano de Araújo Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura
  • Ítalo Felipe Mascena Braga Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura
  • Santiago Vega Cisneros Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura
  • Suzianny Maria Bezerra Cabral da Silva Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura
  • Alfredo Olivera Galvez Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura
  • Eudes de Souza Correia Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura

DOI:

https://doi.org/10.20950/1678-2305.2019.45.2.398

Palavras-chave:

alevinagem, sistema de bioflocos, fitoplí­¢ncton, í­­ndices hematológicos, alimento vivo

Resumo

O presente trabalho teve como objetivo avaliar o desempenho de alevinos de tilápia do Nilo, cultivados em tecnologia de bioflocos, utilizando diferentes densidades de inoculação de Chlorella vulgaris. O delineamento experimental foi inteiramente casualizado, envolvendo o cultivo em sistema de bioflocos e quatro densidades de Chlorella vulgaris (0; 2,5; 5 e 10x104 cel mL-1), com quatro repetições cada. O trabalho teve duração de 63 dias, sendo realizado em caixas com 40L de volume útil, densidade de estocagem de 10 peixes por unidade experimental e peso médio inicial de aproximadamente 1,86 g. As variáveis de qualidade de água não apresentaram diferença significativa entre os tratamentos, principalmente o nitrogênio da amônia total e do nitrito, que estiveram dentro do ní­­vel aceitável para o cultivo da espécie. As variáveis de desempenho zootécnico não foram afetadas pelas diferentes densidades de inoculação da microalga, obtendo peso médio final de aproximadamente 21 g para os tratamentos e taxas de sobrevivência superiores a 80%. Portanto para estas densidades de inoculação da microalga Chlorella vulgaris, com frequência semanal, não apresentaram influência no crescimento de alevinos de tilápia cultivada com bioflocos.

Referências

Abdel-Tawwab, M.; Ahmad, M.H.; Khattab, Y.A.E.; Shalaby, A.M.E. 2010. Effect of dietary protein level, initial body weight, and their interaction on the growth, feed utilization, and physiological alterations of Nile tilapia, Oreochromis niloticus. Aquaculture, 298(3): 267-274. https://doi.org/10.1186/2008-6970-4-3

Abduljabbar, A.A.; Nour, A.M.; Srour, T.; El-Bermawy, N.; Fayed, W.A.; Mansour, A.T. 2015. Intensive Nile tilapia (Oreochromis niloticus) production under biofloc technology systems. Global Journal of Fisheries and Aquaculture Researches, 2(1): 64-80.

American Public Health Association í  APHA. 1995. Standard methods for the examination of water and wastewater. 19ª ed. Washington: APHA.

Avnimelech, Y. 2009. Biofloc Technology í  A Practical Guide Book. Louisiana: The World Aquaculture Society, 175p.

Azevedo, T.M.P.; Martins, M.L.; Yamashita, M.M.; Francisco, C.J. 2006. Hematologia de Oreochromis niloticus: comparação entre peixes mantidos em piscicultura consorciada com suí­­nos e em pesque-pague no Vale do rio Tijucas, Santa Catarina, Brasil. Boletim Instituto da Pesca, 32(1): 41-49.

Azevedo, T.M.P.; Albinati, R.C.B.; Guerra-Santos, B.; Pinto, L.F.B.; Lira, A.D.; Medeiros, S.D.C.; Ayres, M.C.C. 2016. Valores de referência dos parí­¢metros hematológicos de Oreochromis niloticus (Linaeus, 1758) cultivados em tanques-rede em Paulo Afonso, no estado da Bahia, Brasil. Brazilian Journal of Aquatic Science and Technology, 20(2): 63-74. http://dx.doi.org/10.14210/bjast.v20n2.4588

Azim, M.E.; Verdegem, M.C.J.; Mantingh, I.; Van Dam, A.A.; Beveridge, M.C.M. 2003. Ingestion and utilization of periphyton grown on artificial substrates by Nile tilapia, Oreochromis niloticus L. Aquaculture Research, 34(1): 85í 92. https://doi.org/10.1046/j.1365-2109.2003.00802.x

Azim, M.E.; Little, D.C. 2008. The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283(1-4): 29-35. https://doi.org/10.1016/j.aquaculture.2008.06.036

Becker, E.W. 1994. Microalgae: biotechnology and microbiology. New York: Cambridge University Press, 293p.

Bosisio, F.; Rezende, K.F.O.; Barbieri, E . 2017. Alterations in the hematological parameters of Juvenile Nile Tilapia (Oreochromis niloticus) submitted to different salinities. Pan-American Journal of Aquatic Sciences, 12(2) 146-154.

Branyikova, I.; Marsalkova, B.; Doucha, J.; Branyik, T.; Bisova, K.; Zachleder, V.; Vitova, M. 2010. Microalgae í  novel highly efficient starch producers. Biotechnology Bioengineering, 108(4): 766í 776. https://doi.org/10.1002/bit.23016

Brennan, L.; Owende, P. 2010. Biofuels from microalgae - A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2): 557í 577. https://doi.org/10.1016/j.rser.2009.10.009

Brol, J.; Pinho, S.M.; Sgnaulin, T.; Pereira, K.R.; Thomas, M.C.; Mello, G.L.; Miranda-Baeza, A.; Emerenciano, M.G.C. 2017. Tecnologia de bioflocos (BFT) no desempenho zootécnico de tilápias: efeito da linhagem e densidades de estocagem. Archivos de Zootecnia, 66(254): 229-235.

Burford, M.A.; Thompson, P.J.; Mcintosh, R.P.; Bauman, R.H.; Pearson, D.C. 2003. Nutrient and microbial dynamics in high-intensity, zero-exchange shrimp ponds in Belize. Aquaculture, 219(1-4): 393-411. https://doi.org/10.1016/S0044-8486(02)00575-6.

Burford, M.A.; Smith, D.M.; Tabret, S.J.; Coman, F.E.; Thompson, P.J.; Barclay, M.C.; Toscas, P.J. 2004. The effect of dietary protein on the growth and survival of the shrimp, Penaeus monodon in outdoor tanks. Aquaculture Nutrition, 10(1): 15í 23. https://doi.org/10.1046/j.1365-2095.2003.00274.x

Cameron, J.N. 1971. Methemoglobin in erythrocytes of rainbow trout. Comparative Biochemistry and Physiology, 40(3): 743-749. https://doi.org/10.1016/0300-9629(71)90259-3

Choo, H.X.; Caipang, C.M.A. Biofloc technology (BFT) and its application towards improved production in freshwater tilapia culture. 2015. Aquaculture, Aquarium, Conservation & Legislation International Journal of the Bioflux Society, 8(3): 362-366.

Dempster, P.; Baird, D.J.; Beveridge, M.C.M. 1995. Can fish survive by filter-feeding on microparticles? Energy balance in tilapia grazing on algal suspension. Journal of Fish Biology, 47(1): 7í 17. https://doi.org/10.1111/j.1095-8649.1995.tb01868.x

El-Sherif, M.S.; El-Feky, A.M. 2008. Effect of ammonia on Nile Tilapia (O. niloticus) performance and some hematological and histological measures. Disponí­­vel em: <https://pdfs.semanticscholar.org/5168/9619b7925f21a10f066551324c3df38ab798.pdf>Acesso em: 30 nov. 2017.

Ebeling, J.M; Timmons, M.B; Bisogni, J.J. 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic control of ammonia-nitrogen in aquaculture production systems. Aquaculture, 257(1-4): 346í 358. https://doi.org/10.1016/j.aquaculture.2006.03.019

Emerenciano, M.; Gaxiola, G.; Cuzon, G. 2013. Biofloc Technology (BFT): A Review for Aquaculture Application and Animal Food Industry, Biomass Now â€" Cultivation and Utilization. Disponí­­vel em: <https://www.intechopen.com/books/biomass-now-cultivation-and-utilization/biofloc-technology-bft-a-review-for-aquaculture-application-and-animal-food-industry> Acesso em: 24 nov. 2017.

Emerenciano, M.G.C.; Martí­­nez-Córdova, L.F.; Porchas, M.M.; Baeza, A.M. 2017. Biofloc Technology (BFT): A Tool for Water Quality Management in Aquaculture. Disponí­­vel em: <https://www.intechopen.com/books/water-quality/biofloc-technology-bft-a-tool-for-water-quality-management-in-aquaculture> Acesso em: 06 dez. 2017.

Furuya, W.M.; Michelato, M.; Graciano, T.S.; Vidal, L.V.O.; Xavier, T.O.; Furuya, V.R.B., Moura, L.B. 2013. Digestible lysine requirement of Nile tilapia from 86 to 227g fed arginine to lysine balanced diets. Semina: Ciências Agrárias, 34(4): 1945-1954. http://dx.doi.org/10.5433/1679-0359.2013v34n4p1945

Goldenfarb, P.B.; Bowyer, F.P.; Hall, E. 1971. Reproductibility in the hematology laboratory: the micro hematocrit determination. American Journal of Clinical Pathology, 56(1): 35-39.

Green, B.W. 2006. Tilapia: biology, culture, and nutrition. In: Lim, C.; Webster, C.D. Fingerling Production Systems. New York: Food Products Press. p. 181-202.

Hopkins, J.S., Hamilton II, R.D.; Sandier, P.A.; Browdy, C.L.; Stokes, A.D. 1993. Effect of water exchange rate on production, water quality, effluent characteristics and nitrogen budgets of intensive shrimp ponds. Journal of the World Aquaculture Society, 24(3): 304-320. https://doi.org/10.1111/j.1749-7345.1993.tb00162.x

Juarez, L.M.; Moss, S.M.; Figueras, E. 2010. The Shrimp Book, Maturation and larval rearing of the pacific white shrimp, Penaeus vannamei. Nottingham: Nottingham University Press. p. 305-352.

Kay, R.A. 1991. Microalgae as Food and Supplement. Critical Reviews in Food Science and Nutrition, 30(6): 555-573. https://doi.org/10.1080/10408399109527556

Kroupova, H.; Machova, J.; Svobodova, Z. 2005. Nitrite influence on fish: a review. Veterinarni Medicina í  Czech, 50(11): 461í 471.

Krummenauer, D.; Seifert Jr., C.A.; Poersch, L.H.; Foes, G.K.; Lara, G.R.; Wasielesky Jr., W. 2012. Cultivo de camarões marinhos em sistema de bioflocos: análise de reutilização da água. Atlí­¢ntica, 34(2): 103-111. https://doi.org/10.5088/atlí­¢ntica.v34i2.3118

Kuhn, D.; Smith, S.A.; Boardman, G.D.; Angier, M.W.; Marsh, M.; Flick Jr, G.J. 2010. Chronic toxicity of nitrate to Pacific white shrimp, Litopenaeus vannamei: impacts on survival, growth, antenna e length, and pathology. Aquaculture, 309(1-4): 109-114. https://doi.org/10.1016/j.aquaculture.2010.09.014

Lee, T.L.C.; Marino, G.E.G. 2010. Microalgae for "healthy” foods possibilities and challenges. Comprehensive Reviews in Food Science and Food Safety, 9(6): 655í 675. https://doi.org/10.1111/j.1541-4337.2010.00132.x

Long, L.; Yang, J.; Li, Y.; Guan, C.; Wu, F. 2015. Effect of biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (O. niloticus). Aquaculture, 448 (1): 135-141. https://doi.org/10.1016/j.aquaculture.2015.05.017

Lourenço, S.O. 2006. Cultivo de microalgas marinhas: princí­­pios e aplicações. São Carlos: Ri Ma. p. 606.

Luo, G.; Avnimelech, Y.; Pan, Y.F.; Tan, H.X. 2012. Inorganic nitrogen dynamics in sequencing Batch reactors using biofloc technology to treat aquaculture sludge. Aquacultural Engineering, 52 (1): 73-79. https://doi.org/10.1016/j.aquaeng.2012.09.003

Luo, G.; Gao, Q.; Wang, C.; Liu, W.; Sun, D.; Li, L.; Tan, H. 2014. Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture, 422í 423(1): 1í 7. https://doi.org/10.1016/j.aquaculture.2013.11.023

Miranda-Baeza, A.; Mariscal-Lopez, M.A.; Lopez-Elias, J.A.; Rivas-Veja, M.E.; Emerenciano, M.; Sanchez-Romero, A.E; Esquer-Mendez, J.L. 2017. Effect of inoculation of the cyanobacteria Oscillatoria sp. on tilapia biofloc culture. Aquaculture research, 48(9): 4725í 4734. https://doi.org/10.1111/are.13294

Monroy, M.; Lara, D.; Castro, J.; Castro, G.; Emerenciano, M. 2013. Composición y abundancia de comunidades microbianas asociadas al biofloc en un cultivo de tilapia. Revista de biologí­­a marina y oceanografia, 48(3): 511-520. https://doi.org/10.4067/S0718-19572013000300009

Moronta, R.; Mora, R.; Morales, E. 2006. Respuesta de la microalga Chlorella sorokiniana al pH, salinidad y temperatura en condiciones axénicas y no axénicas. Revista de la Facultad de Agronomí­­a, 23(1): 28-43.

Ogello, E.O.; Musa, S.M.; Aura, C.M.; Abwao, J.O.; Munguti, J.M. 2014. An Appraisal of the Feasibility of Tilapia Production in Ponds Using Biofloc Technology: A review. International Journal of Aquatic Science, 5(1): 21-39.

Ray, A.J.; Lewis, B.L.; Browdy, C.L.; Leffler, J.W. 2010. Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant-based feed in minimal exchange, super intensive culture systems. Aquaculture, 299(1-4): 89-98. https://doi.org/10.1016/j.aquaculture.2009.11.021

Rodrigues-Soares, J.P.; Jesus, G.F.A.; Gonçalves, E.L.T.; Moraes, K.N.; Chagas, E.C.; Chaves, F.C.M.; Belo, M.A.A.; Jatobá, A.; Mourií­±o, J.L.P.; Martins, M.L. 2018. Induced aerocystitis and hemato-immunological parameters in Nile tilapia fed supplemented diet with essential oil of Lippia alba. Brazilian Journal of Veterinary Research and Animal Science, 55(1): 1-12. https://doi.org/10.11606/issn.1678-4456.bjvras.2018.136717

Samocha, T.M.; Prangnell, D.I.; Hanson, T.R.; Treece, G.D.; Morris, T.C.; Castro, L.F.; Staresinic, N. 2017. Design and Operation of Super Intensive, Biofloc-Dominated Systems for Indoor Production of the Pacific White Shrimp, Litopenaeus vannameií  The Texas A&M AgriLife Research Experience. Louisiana: The World Aquaculture Society. 368p.

Silva, P.C.; Kronka, S.N.; Tavares, L.H.S.; Souza, V.L. 2002. Desempenho produtivo da tilápia do Nilo (Oreochromis niloticus L.) em diferentes densidades e trocas de água em "raceway". Acta Scientiarum Animal Sciences, 24(4): 935-941. http://dx.doi.org/10.4025/actascianimsci.v24i0.2441

Silva, M.J.S. 2013. Efeito agudo da amônia e do nitrito em tilápias Oreochromis niloticus mantidas em baixa salinidade, Minas Gerais, Brasil. Belo Horizonte. 48f. (Dissertação de Mestrado. Universidade Federal de Minas Gerais). Disponí­­vel em: < http://www.bibliotecadigital.ufmg.br/dspace/handle/1843/BUOS-9LSHK8> Acesso em: 20 nov. 2017.

Schveitzer, R.; Costódio, P.F.S.; Santo, C.M.E.; Arana, L.V.; Seiffert, W.Q.; Andreatta, E.R. 2013. Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquacultural Engineering, 56(1): 59-70. https://doi.org/10.1016/j.aquaeng.2013.04.006

Servaites, J.C; Faeth, J.L.; Sidhu, S.S. 2012. A dye binding method for measurement of total protein in microalgae. Analytical Biochemistry, 421(1): 75í 80. https://doi.org/10.1016/j.ab.2011.10.047

Tacon, A.G.J.; Cody, J.J.; Conquest, L.D.; Divakaran, S.; Forster, I.P.; Decampp, O.E. 2002. Effect of culture system on the nutrition and growth performance of Pacific white shrimp Litopenaeus vannamei (Boone) fed different diets. Aquaculture Nutrition, 8(2): 121í 137. https://doi.org/10.1046/j.1365-2095.2002.00199.x

Tavares-Dias, M. 2015. Aquicultura no Brasil novas perspectivas. In: Tavares-Dias, M. e Mariano, W. S. Parí­¢metros sanguí­­neos de referência para espécies de peixes cultivados. Pedro e João editores, São Carlos. p. 11-30.

Timmons, M.B. e Ebeling, J.M. 2007. Recirculating Aquaculture. Biofiltration. Ithaca, Nova Iorque, p. 275-318.

Wasielesky, W.; Atwood, H.; Stokes, A.; Browdy, C.L. 2006. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, 258(4): 396-403. https://doi.org/10.1016/j.aquaculture.2006.04.030

Wintrobe, M.M. 1934. Variations on the size and hemoglobin content of erythrocytes in the blood various vertebrates. Folia Haematologica, 5(1): 32-49.

Yanbo W.; Wenju Z.; Weifen L.; Zirong X. 2006. Acute toxicity of nitrite on tilapia (Oreochromis niloticus) at different external chloride concentrations. Fish Physiology and Biochemistry, 32(1): 49í 54. https://doi.org/10.1007/s10695-005-5744-2

Zapata, K.P.; Brito, L.O.; Lima, P.C.M.; Vinatea, L.A.; Galvez, A.O.; Cárdenas, J.M.V. 2017. Cultivo de alevines de tilapia en sistema biofloc bajo diferentes relaciones carbono/nitrógeno. Boletim do Instituto de Pesca, 43(3): 399-407. https://doi.org/10.20950/1678-2305.2017v43n3p399

Downloads

Publicado

2019-03-26

Edição

Seção

Artigo cientí­fico

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 > >>