• Priscila Costa Rezende Universidade Federal de Santa Catarina -  UFSC, Centro de Ciências Agrárias, Departamento de Aquicultura, Laboratório de Camarí­µes Marinhos,
  • Delano Dias Schleder Instituto Federal Catarinense -  IFC, Campus de Araquari,
  • Walter Quadros Seiffert Universidade Federal de Santa Catarina -  UFSC, Centro de Ciências Agrárias, Departamento de Aquicultura, Laboratório de Camarí­µes Marinhos
  • Edemar Roberto Andreatta Universidade Federal de Santa Catarina -  UFSC, Centro de Ciências Agrárias, Departamento de Aquicultura, Laboratório de Camarí­µes Marinhos,
  • Felipe Nascimento Vieira Universidade Federal de Santa Catarina -  UFSC, Centro de Ciências Agrárias, Departamento de Aquicultura, Laboratório de Camarí­µes Marinhos,



Litopenaeus vannamei, post-larvae, stress test, sustainability


This study evaluated different stocking densities during pre-nursery of Pacific white shrimp postâ€"˜larvae (PL) reared in a biofloc system. The tanks (60 L) were stocked with PL stage 5 (PL 5) under five densities (80, 100, 120, 140 and 160 PLs L-1), in triplicate, resulting in 15 experimental units. PLs were fed nine times a day using commercial feed. Molasses was added in all treatments four times a day at an average carbon: nitrogen ratio of 14.7: 1. The experiment was carried out until the PLs reached PL 20 stage, and during this time, water quality variables, survival, weight gain and survival to salinity stress were all evaluated. For treatments above 100 PLs L-1, total suspended solids were higher than recommended (700 mg L-1). Also, the treatment with 160 PL L-1 had higher total ammonia nitrogen peaks (>10 mg L-1), resulting in lower survival in this treatment. No differences were observed between treatments in the other performance parameters evaluated (final weight and survival to salinity stress). It was concluded that pre-nursery of Pacific white shrimp can be performed using densities up to 140 post-larvae L-1 in a biofloc system without compromising shrimp growth performance.



APHA í  American Public Health Association. 2005. Standard methods for the examination of water and wastewater. Washington: Byrd Prepress.

Arnold, S.J.; Coman, F.E.; Jackson, C.J.; Groves, S.A. 2009. High-intensity, zero water-exchange production of juvenile tiger shrimp, Penaeus monodon: an evaluation of artificial substrates and stocking density. Journal of Aquaculture, 293(1-2): 42-48.

Arnold, S.J.; Sellars, M.J.; Crocos, P.J.; Coman, G.J. 2006. Intensive production of juvenile tiger shrimp Penaeus monodon: an evaluation of stocking density and artificial substrates. Aquaculture (Amsterdam, Netherlands), 261(1): 890-896.

Avnimelech, Y. 1999. Carbon nitrogen ratio as a control element in aquaculture systems. Aquaculture (Amsterdam, Netherlands), 176(3-4): 227-235.

Avnimelech, Y. 2009. Biofloc technology: a practical guide book. Baton Rouge: Journal of the World Aquaculture Society. 182p.

Avnimelech, Y. 2014. Biofloc technology í  A Practical Guide book. 3rd ed. Baton Rouge: The World Aquaculture Society. 258p.

Barak, Y.; Cytryn, E.; Gelfand, I.; Krom, M.; Van Rijn, J. 2003. Phosphorus removal in a prototype, recirculating aquaculture system. Aquaculture (Amsterdam, Netherlands), 220(1-4): 313-326.

Barbieri, E.; Bondioli, A.C.V.; Melo, C.B.; Henriques, M.B. 2014. Effects of low salinity on juvenile pink shrimp Farfantepenaeus paulensis (Perez-Farfante 1967, Crustacea). Marine and Freshwater Behaviour and Physiology, 47(4): 273-283.

Barbieri, E.; Medeiros, A.M.Z.; Henriques, M.B. 2016. Oxygen consumption and ammonia excretion of juvenile pink shrimp (Farfantepenaeus paulensis) in culture: Temperature effects. Marine and Freshwater Behaviour and Physiology, 49(1): 19-25.

Cobo, M. DE L.; Sonnenholzner, S.; Wille, M.; Sorgeloos, P. 2012. Ammonia tolerance of Litopenaeus vannamei (Boone) larvae. Aquaculture Research, 45(3): 470-475.

Cohen, J.M.; Samocha, T.M.; Fox, J.M.; Gandy, R.L.; Lawrence, A.L. 2005. Characterization of water quality factors during intensive raceway production of juvenile Litopenaeus vannamei using limited discharge and biosecure management tools. Aquacultural Engineering, 32(3-4): 425-442.

Crab, R.; Kochva, M.; Verstraete, W.; Avnimelech, Y. 2009. Bioflocs technology application in overwintering of tilapia. Aquacultural Engineering, 40(3): 105-112.

FAO í  Food and Agriculture Organization. 2009. The state of world fisheries and aquaculture. Rome: FAO Fisheries Department.

Krummenauer, D.; Cavalli, R.O.; Ballester, E.L.C.; Wasielesky Junior, W.J. 2010. Feasibility of pacific white shrimp Litopenaeus vannamei culture in southern Brazil: effects of stocking density and a single or adouble crop management strategy in earthen ponds. Aquaculture Research, 41(2): 240-248.

Krummenauer, D.; Wasielesky Júnior, W.; Cavalli, R.O.; Peixoto, S.; Zogbi, P.R. 2006. Viability of culturing the shrimp Farfantepenaeus paulensis (Crustacea, Decapoda) in cages under diferente stocking densities during autumn in southern Brazil. Ciência Rural, 36(1): 252-257.

Li, S.; Willits, D.H.; Browdy, C.L.; Timmons, M.B.; Losordo, T.M. 2009. Thermal modeling of greenhouse aquaculture raceway systems. Aquacultural Engineering, 41(1): 1-13.

Li, X.; Dong, S.; Lei, Y.; Li, Y. 2007. The effect of stocking density of Chinese mitten crab Eriocheirsinensis on rice and crab seed yields in rice-crab culture systems. Aquaculture (Amsterdam, Netherlands), 273(4): 487-493.

Lin, Y.; Chen, J.C. 2001. Acute toxicity of ammonia on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Journal of Experimental Marine Biology and Ecology, 259(1): 109-119. PMid:11325379.

McAbee, B.J.; Browdy, C.L.; Rhodes, R.J.; Stokes, A.D. 2003. The use of greenhouse-enclosed raceway systems for the superintensive production of pacific white shrimp Litopenaeus vannamei in the United States. Global Aquaculture Advocate, 6: 40-43.

McIntosh, D.; Samocha, T.M.; Jones, E.R.; Lawrence, A.L.; Horowitz, S.; Horowitz, A. 2001. Effects of two commercially available low-protein diets (21% and 31%) on water and sediment quality, and on the production of L. vannamei in an outdoor tank system with limited water discharge. Aquacultural Engineering, 25(2): 69-82.

McIntosh, R.P. 2000. Changing paradigms in shrimp farming: III. Pond design and operation considerations. Global Aquaculture Advocate, 3: 42-45.

Moss, K.R.K.; Moss, S.M. 2004. Effects of artificial substrate and stocking density on the nursery production of pacific white shrimp Litopenaeus vannamei. Journal of the World Aquaculture Society, 35(4): 537-542.

Naranjo-Paramo, J.; Hernandez-Llamas, A.; Villarreal, H. 2004. Effect of stocking density on growth, survival and yield of juvenile redclaw crayfish Cheraxquadricarinatus (Decapoda: Parastacidae) in gravel-line commercial nursery ponds. Aquaculture (Amsterdam, Netherlands), 242(1-4): 197-206.

Peixoto Junior, S.; Wasielesky Junior, W.J.; Louzada Junior, L. 2003. Comparative analysis of pink shrimp, Farfantepenaeus paulensis, and pacific white shrimp, Litopenaeus vannamei, culture in extreme Southern Brazil. Journal of Applied Aquatic, 14(1-2): 101-112.

Pontinha, V.A.; Vieira, F.N.; Hayashi, L. 2018. Mortality of pacific white shrimp submitted to hypothermic and hyposalinic stress. Boletim do Instituto de Pesca, 44(2): e310.

Rezende, C.P.; Schleder, D.D.; Silva, V.H.; Henriques, M.F.; Lorenzo, A.M.; Seiffert, W.Q.; Andreatta, E.R.; Vieira, N.F. 2018. Prenursery of the Pacific white shrimp in a biofloc system using different artificial substrates. Aquacultural Engineering, 82: 25-30.

Samocha, T.M.; Gandy, R.L.; McMahon, D.Z.; Blacher, T.; Benner, R.A.; Lawrence, A.L. 2002. Use of intensive nursery raceway system with limited water discharge to improve production of the Pacific white shrimp Litopenaeus vannamei. In: World Aquaculture Society Annual Meeting, Beijing, 23-27 apr./2002. Proceedings... Beijing: Society Annual Meeting.

Samocha, T.M.; Patnaik, S.; Speed, M.; Ali, A.M.; Burger, J.M.; Almeida, R.V.; Ayub, Z.; Harisanto, M.; Horowitz, A.; Brock, D.L. 2007. Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacultural Engineering, 36(2): 184-191.

Sandifer, P.A.; Hopkins, J.T. 1996. Conceptual design of a sustainable pond-based shrimp culture system. Aquacultural Engineering, 15(1): 41-52.

Schveitzer, R.; Arantes, R.; Costódio, P.F.S.; Santo, C.M.E.; Arana, L.V.; Seiffert, W.Q.; Andreatta, E.R. 2013. Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquacultural Engineering, 56: 59-70.

Schveitzer, R.; Lorenzo, M.A.; Vieira, F.N.; Pereira, S.A.; Mourií­±o, J.L.P.; Seiffert, W.Q.; Andreatta, E.R. 2017. Nursery of yung Litopenaeus vannamei post-larvae reared in biofloc- and microalgae-based system. Aquacultural Engineering, 78: 140-145.

Strickland, J.D.H.; Parsons, T.R. 1972. A practical handbook of seawater analysis. Bulletin - Fisheries Research Board of Canada, 167: 1-205.

Van Wyk, P.; Scarpa, J. 1999. Water quality requirements and management. In: Van Wyk, P.; Davis-Hodgkins, M.; Laramore, R.; Main, K.; Mountain, J.; Scarpa J. Farming marine shrimp in recirculating freshwater systems. Tallahassee: Florida Department of Agriculture and Consumer Services. p. 128-138.

Wyban, J.A.; Sweeney, J.N. 1991. Intensive shrimp production technology. Oceanic Institute Shrimp Manual. Honolulu: The Oceanic Institute. 158p.

Zar, J.H. 1984. Biostatistical analisys. New Jersey: Prentice-Hall. 662p.




Most read articles by the same author(s)

1 2 > >>