ADDITION OF <i>Aurantiochytrium</i> sp. MEAL IN THE DIET AFFECTS IMMUNITY AND THERMAL SHOCK RESISTANCE OF THE PACIFIC WHITE SHRIMP

Authors

DOI:

https://doi.org/10.20950/1678-2305/bip.2021.47.e631

Keywords:

Litopenaeus vannamei;, DHA;, imunidade;, microalgae;, temperature.

Abstract

This paper reports the evaluation of digestibility, immunological parameters, and resistance to thermal shock at low temperature in Litopenaeus vannamei fed diets with diferent Aurantiochytrium sp. meal additions (0; 0.5; 1 and 2%). First, the apparent digestibility coefficient of the ingredient was determined. The digestibility of the microalgae meal was high for protein (74.90%); around 60% for lipids, and for docosahexaenoic fatty acid (DHA) it was 55.61%. After, shrimp rearing with the feed additive was carried out in a clear water system, containing 25 shrimp (initial weight: 4.89 ± 0.27 g) per 400 L tank. Feeding occurred four times a day. After a three-week period, immunological parameters were evaluated and thermal shock was performed. Animals fed 0.5% and 2% of the microalgae Aurantiochytrium sp. showed higher survival to thermal shock. In immunological analyses, the serum agglutiniting titer was higher (p <0.05) in the 0.5 and 2% additions of the microalgae meal, and the phenoloxidase activity (PO) was higher in the 1% addition (p <0.05). It is concluded that there is good utilization of the nutrients of Aurantiochytrium sp. meal by L. vannamei and its addition to the diet (0.5 and 1%) increased shrimp resistance to thermal shock.

References

Alabi, A.O.; Jones, D.A.; Latchford, J.W. 1999. The efficacy of immersion as opposed to oral vaccination of Penaeus indicus larvae against Vibrio harveyi. Aquaculture, 178(1-2): 1-11. https://doi.org/10.1016/s0044-8486(99)00131-3.

AOAC í  Association of Official Analytical Chemists. 1999. Official Methods of Analysis. 16th ed. Arlington: AOAC. 771p.

Barracco, M.A.; Perazzolo, L.M.; Rosa, R.D. 2014. Avances en la inmunologí­­a del camarón. In: Morales, V.; Cuellar-Angel, J. Guí­­a técnica: patologí­­a e inmunologí­­a de camarones penaeidos. 2nd ed. Panamá: CYTED. p. 237-308.

Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2): 248-254. https://doi.org/10.1016/0003-2697(76)90527-3.

Chi, Z.; Liu, Y.; Frear, C.; Chen, S. 2009. Study of a two-stage growth of DHAproducing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level. Applied Microbiology and Biotechnology,
81(1): 1141-1148. https://doi.org/10.1007/s00253-008-1740-7.

Corrêa, C.F.; Nobrega, R.O.; Mattioni, B.; Fracalossi, D.M. 2018. Mixes of plant oils as fish oil substitutes for Nile tilapia at optimal and cold suboptimal temperature. Aquaculture, 497: 82-90. https://doi.org/10.1016/j.aquaculture.2018.07.034.

FAO í  Food and Agricultural Organization of the United Nations. 2016. The state of world fisheries and aquaculture. Roma: SOFIA. 190p.

Folch, J.; Lees, M.; Sloane-Stanley, C.H. 1957. A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry, 226: 477-509.

Gong, H.; Lawrence, A.L.; Jiang, D.H.; Castille, F.L.; Gatlin, D.M. 2000. Lipid nutrition of juvenile Litopenaeus vannamei: I. Dietary cholesterol and de-oiled soy lecithin requirements and their interaction. Aquaculture, 190(3-4): 305-324. https://doi.org/10.1016/S0044-8486(00)00414-2.

Guimarães, A.M.; Schleder, D.D.; Nagata, M.; Nóbrega, R.O.; Fracalossi, D.M.; Seiffert, W.Q.; Vieira, F.N. 2019. Aurantiochytrium sp. meal can replace fish oil in practical diets for the juvenile Pacific white shrimp. Aquaculture Nutrition, 25(4): 798-807. https://doi.org/10.1111/anu.12897.

Harwood, J.L.; Guschina, I.A. 2009. The versatility of algae and their lipid metabolism. Biochimie, 91(6): 679-684. https://doi.org/10.1016/j.biochi.2008.11.004.

Hayward, S.A.L.; Manso, B.; Cossins, A.R. 2014. Molecular basis of chill resistance adaptations in poikilothermic animals. The Journal of Experimental Biology, 217(3): 6-15. https://doi.org/10.1242/jeb.096537.

Huang, X.; Zhou, H.; Zhang, H. 2006. The efect of Sargassum fusiforme polysaccharide extracts on vibriosis resistance and imune activy of the shrimp, Fenneropeaneus chinensis. Fish & Shellfish Immunology, 20(5): 750-757. https://doi.org/10.1016/j.fsi.2005.09.008.

Ju, Z.Y.; Deng, D.F.; Dominy, W. 2012. A defatted microalgae (Haematococcus pluvialis) meal as a protein ingredient to partially replace fishmeal in diets of Pacific white shrimp (Litopenaeus vannamei, Boone, 1931). Aquaculture, 354-355: 50-55. https://doi.org/10.1016/j.aquaculture.2012.04.028.

Kautsky, N.; Rí­¶nnbí­¤ck, P.; Tedengren, M.; Troell, M. 2000. Ecosystem perspectives on management of disease in shrimp pond farming. Aquaculture, 191(1-3): 145-161. https://doi.org/10.1016/S0044-8486(00)00424-5.

Kitikiew, S.; Yu-Yuan, C.; Su-Tuen, Y.; Jiann-Chu, C. 2017. White Shrimp Litopenaeus vannamei that have received fucoidan show protective immunity after ammonia stressing. Taiwan Shuichanxue Hui Kan, 42(30): 189-197.

Li, Q.; Ai, Q.; Mai, K.; Xu, W.; Zheng, Y. 2013. A comparative study: In vitro effects of EPA and DHA on imune functions of head-kidney macrophages isolated from large yellow croaker (Larmichthys crocea). Fish & Shellfish Immunology, 35(3): 933-940. https://doi.org/10.1016/j.fsi.2013.07.004.

Lightner, D.V. 2011. Virus diseases of farmed shrimp in the Western Hemisphere (the Americas): a review. Journal of Invertebrate Pathology, 106(1): 110-130. https://doi.org/10.1016/j.jip.2010.09.012.

Macias-Sancho, J.; Henrique Poersch, L.H.; Bauer, W.; Luis Alberto Romano, L.A.; Wasielesky, W.; Tesser, M.B. 2014. Fishmeal substitution with Arthrospira (Spirulina platensis) in a practical diet for Litopenaeus vannamei: effects on growth and immunological parameters. Aquaculture, 426-427: 120-125. https://doi.org/10.1016/j.aquaculture.2014.01.028.

Moser, J.; Álvarez, D.A.G.; Cano, F.M.; Garcia, T.E.; Molina, D.E.C.; Clark, G.P.; Marques, M.R.F.; Barajas, F.J.M.; López, J.H. 2012. Water temperature influences viral load and detection of White Spot Syndrome Virus (WSSV) in Litopenaeus vannamei and wild crustaceans. Aquaculture, 326-329: 9-14. https://doi.org/10.1016/j.aquaculture.2011.10.033.

Neto, J.F.S.; Torres, V.M.; Lima, P.W.C.; Farias, W.R.L. 2008. Trial culture of marine shrimp Litopenaeus vannamei postlarvae under three feeding strategies. Ciência Agronômica, 39(3): 410-415.

Niu, J.; Chen, X.; Lu, X.; Jiang, S.; Lin, H.; Liu, Y.; Huang, Z.; Wang, J.; Wang Y., Tian, L. 2015. Effects of different levels of dietary wakame (Undaria pinnatifida) on growth, immunity and intestinal structure of juvenile Penaeus monodon. Aquaculture, 435: 78-85. https://doi.org/10.1016/j.aquaculture.2014.08.013.

Nonwachai, T.; Purivirojkul, W.; Limsuwan, C.; Chuchird, N.; Velasco, M.; Dhar, A.K. 2010. Growth, nonspecific immune characteristics, and survival upon challenge with Vibrio harveyi in Pacific white shrimp (Litopenaeus vannamei) raised on diets containing algal meal. Fish & Shellfish Immunology, 29(2): 298-304. https://doi.org/10.1016/j.fsi.2010.04.009.

NRC í  National Research Council. 2011. Nutrient requirements of fish and shrimp. Washington: National Academic Press. 376p.

Pruitt, N.L. 1990. Adaptations to temperature in the cellular membranes of crustacea: membrane structure and metabolism. Journal of Thermal Biology, 15(1): 1-8. https://doi.org/10.1016/0306-4565(90)90040-O.

Sakai, M. 1999. Current research status of fish immunostimulants. Aquaculture, 172(1-2): 63-92. https://doi.org/10.1016/S0044-8486(98)00436-0.

Schleder, D.D.; Blank, M.; Peruch, L.G.B.; Vieira, F.N.; Andreatta, E.R.; Hayashi, L. 2017. Thermal resistance of Pacific white shrimp fed Sargassum filipendula: A MALDI-TOF mass spectrometry approach. Aquaculture, 481: 103-111. https://doi.org/10.1016/j.aquaculture.2017.08.028.

Schumann, J. 2016. It is all about fluidity: fatty acids and macrophage phagocytosis. European Journal of Pharmacology, 785: 18-23. https://doi.org/10.1016/j.ejphar.2015.04.057.

Shah, M.R.; Lutzu, G.A.; Alam, A.; Sarker, P.; Chowdhury, M.K.; Parsaeimehr, A.; Liang, Y.; Daroch, M. 2018. Microalgae in aquafeeds for a sustainable aquaculture industry. Journal of Applied Phycology, 30(1): 197-213. https://doi.org/10.1007/s10811-017-1234-z.

Silva, J.W.A.; Santos, M.J.B.; Bezerra, J.H.C.; Damasceno, V.L.; Araujo, G.S.; Santos, E.S.; Moreira, R.T.; Lopes, D.N.M. 2020. Influência da microalga Chlorella vulgaris no desempenho zootécnico do camarão marinho Litopenaeus vannamei. Brazilian Journal of Development, 6(2): 5603-5614. https://doi.org/10.34117/bjdv6n2-019.

Sí­¶derhí­¤ll, K.; Hí­¤ll, L. 1984. Lipopolysaccharide-induced activation of prophenoloxidade activating system in crayfish haemocyte lysate. Biochimica et Biophysica Acta, 797(1): 99-104. https://doi.org/10.1016/0304-4165(84)90387-8.

Strickland, J.D.H.; Parsons, T.R. 1972. A practical handbook of seawater analysis. Fisheries Research Board of Canada Bulletin. Ottawa: Office des recherches sur les peÌ"šcheries du Canada. 310p.

Teets, N.M.; Denlinger, D.L. 2013. Physiological mechanisms of seasonal and rapid cold-hardening in insects. Physiological Entomology, 38(2): 105-116. https://doi.org/10.1111/phen.12019.

Teunissen, O.S.P.; Faber, R.; Booms, G.H.R.; Latscha, T.; Boon, J.H. 1998. Influence of vaccination on vibriosis resistance of the giant black tiger shrimp Penaeus monodon (Fabricius). Aquaculture, 164(1-4): 359-366. https://doi.org/10.1016/S0044-8486(98)00200-2.

Thanigaivel, S.; Chandrasekaran, N.; Mukherjee, A.; Thomas, J. 2016. Seaweeds as an alternative therapeutic source for aquatic disease management. Aquaculture, 464: 529-536. https://doi.org/10.1016/j.aquaculture.2016.08.001.

Tomanek, L. 2008. The importance of physiological limits in determining biogeographical range shifts due to global climate change: the heat shock response. Physiological and Biochemical Zoology, 81(6): 709-717. https://doi.org/10.1086/590163.

Van Wyk, P.; Scarpa, J. 1999. Water Quality and Management. In: Van Wyk, P.; Davis-Hodgkins, M.; Laramore, R.; Main, K.L.; Mountain, J.; Scarpa, J. Farming marine shrimp in recirculating freshwater systems. Tallahassee: Florida Department of Agriculture & Consumer Services. pp. 141-162.

Wang, Y.; Li, M.; Filer, Y.; Xue, Q.; Mai, K. 2017. Replacement of fish oil with a DHA-rich Schizochytrium meal on growth performance, activities of digestive enzyme and fatty acid profile of Pacific white shrimp (Litopenaeus vannamei) larvae. Aquaculture Nutrition, 23(5):1113-1120. https://doi.org/10.1111/anu.12479.

Willmer, P.; Stone, G.; Johnston, I. 2005. Environmental physiology of animals. 2nd ed. Malden: Blackwell Science, 754p.

Xia, S.; Zhao, P.; Chen, K.; Li, Y.; Liu, S.; Zhang, L.; Yang, H. 2012. Feeding preferences of the sea cucumber Apostichopus japonicas (Selenka) on various seaweed diets. Aquaculture, 344-349(1): 205-209. https://doi.org/10.1016/j.aquaculture.2012.03.022.

Yangthong, M.; Hutadilok-Towatana, N.; Thawonsuwan, J.; Wutiporn, P. 2016. An aqueous extract from Sargassum sp. enhances the immune response and resistance against Streptococcus iniae in the Asian sea bass (Lates calcarifer Bloch). Journal of Applied Phycology, 28(6): 3587-3598. https://doi.org/10.1007/s10811-016-0859-7.

Yenari, M.A.; Giffard, R.G.; Sapolsky, R.M.; Steinberg, G.K. 1999. The neuroprotective potential of heat shock protein 70 (HSP70). Trends in Molecular Medicine, 5(12): 525-531. https://doi.org/10.1016/s1357-4310(99)01599-3.

Zhou, Q.; Zeng, W.; Wang, T.; Wang, Y.; Xie, F. 2012. Dietary arginine requirement of juvenile Pacifc white shrimp, Litopenaeus vannamei. Aquaculture, 364-365: 252-255. https://doi.org/10.1016/j.aquaculture.2012.08.020.

Downloads

Published

2021-09-13

Issue

Section

Scientific Article

Most read articles by the same author(s)

1 2 3 > >>