UTILIZAÇÃO DO FARELO DE ARROZ COM E SEM FERMENTAÇÃO NA PRODUÇÃO DO ROTÍFERO <i>Brachionus plicatilis</i>
DOI:
https://doi.org/10.20950/1678-2305.2020.46.2.577Palavras-chave:
Rice bran;, population growth;, production;, nutrition;, solid-state fermentation.Resumo
O objetivo do presente trabalho foi avaliar a utilização do farelo de arroz integral e fermentado na alimentação de rotíferos, baseado nos efeitos sobre os parí¢metros de desempenho, respostas antioxidantes e de dano oxidativo, e qualidade de água. O estudo foi baseado em três experimentos, os quais compararam o efeito de diferentes concentrações de farelo de arroz integral na alimentação de rotíferos, o efeito de diferentes concentrações de farelo de arroz fermentado na alimentação de rotíferos e o efeito das melhores concentrações de farelo de arroz integral e fermentado, bem como a substituição de parte da levedura de panificação por esses farelos. Os resultados mostraram um melhor desempenho em crescimento nos tratamentos com 0,7 g de levedura, 1,5 g de farelo fermentado, 0,35 g de levedura + 0,75 g de farelo integral e 0,35 g de levedura +0,75 g de farelo fermentado. A fermentação do farelo de arroz por 6 horas não induziu estresse oxidativo nos rotíferos. Foi constatado que pode ser usado 1,5 g de farelo fermentado e substituído 50% de levedura por farelo de arroz fermentado ou integral na alimentação de rotíferos, com a vantagem de apresentar melhor qualidade ambiental, devido a diminuição da amônia da água.
Referências
Amado, L.L.; Garcia, M.L.; Ramos, P.B.; Freitas, R.F.; Zafalon, B.; Ferreira, J.L.R.; Yunes, J.S.; Monserrat, J.M. 2009. A method to measure total antioxidant capacity against peroxyl radicals in aquatic organisms: application to evaluate microcystins toxicity. Science of Total Environment, 407: 2115-2123. http://dx.doi.org/10.1016/j.scitotenv.2008.11.038
APHA - American Public Health Association. 1998. Standard methods for the examination of water and wastewater. Washington. 1193p.
Aminot, A.; Chaussepied, M. 1983. Manuel des analyses chimiques en milieu marin. Brest: CNEXO. 395p.
Amissah, J.G.N.; Ellis W.O.; Oduro, I.; Manfu, J.T.L. 2003. Nutrient composition of bran from new rice varieties under study in Ghana. Food Control, 14: 21-24. http://dx.doi.org/10.1016/S0956-7135(02)00047-6
AOAC í Association of Official Analytical Chemists. 1999 Official methods of analysis of the Association of Official Analytical Chemists. 16th ed. Washington: AOAC.
Christ-Ribeiro, A.; Graça, C.S.; Chiattoni, L.M.; Massarolo, K.C.; Duarte, F.A.; Mellado, M.; Sousa-Soares, L.A. 2017. Fermentation Process in the Availability of Nutrients in Rice Bran. Research & Reviews: Journal of Microbiology and Biotechnology, 6(2): 45-52.
Christ-Ribeiro, A.; Graça, C.S.; Kupski, L.; Badiale-Furlong, E.; Souza-Soares, L.A. 2019. Cytotoxicity, antifungal and anti mycotoxins effects of phenolic compounds from fermented rice bran and Spirulina sp. Process Biochemistry, 80: 190-196. http:// dx.doi.org/10.1016/j.procbio.2019.02.007.
Coelho, G.F.; Júnior, A.C.G.; Sousa, R.F.B.; Schwantes, D.; Miola, A.J.; Domingues, C.V.R. 2014. Uso de técnicas de adsorção utilizando resíduos agroindustriais na remoção de contaminantes em águas. Journal of Agronomic Sciences, 3: 291-317.
Denekamp, N.Y.; Thome, M.A.; Clark, M.S.; Kube, M.; Reinhardt, R.; Lubzens, E. 2009. Discovering genes associated with dormancy in the monogonont rotifer Brachionus plicatilis. BMC Genomics 10: 108. https://doi.org/10.1186/1471-2164-10-108
Dhert P.; Rombaut, G.; Suantika, G.; Sorgeloos, P. 2001. Advancement of rotifer culture and manipulation techniques in Europe. Aquaculture, 200: 129-146. http://dx.doi.org/10.1016/S0044-8486(01)00697-4
Drí¶ge, W. 2002. Free radicals in the physiological control of cell function. Physiological Reviews, 82: 47-95.
Feddern, V.; Furlong, E.B.; Soares, L.A.S. 2007. Effects of fermentation on the physicochemical and nutritional properties of rice bran. Ciência e Tecnologia de Alimentos, 27: 800-804. http://dx.doi.org/10.1590/S0101-20612007000400020.
Ferreira, M.; Burgueno, A.C.; Freire, I.; Otero, A. 2018. Effect of nutritional status and concentration of Nannochloropsis gaditana as enrichment diet for the marine rotifer Brachionus sp. Aquaculture, 491: 351-357. http://dx.doi.org/10.1016/j.aquaculture.2018.03.024
Ferreira, P.M.P. 2009. Manual de cultivo e bioencapsulação da cadeia alimentar para a Larvicultura de peixes marinhos. Instituto Nacional de Recursos Biológicos I.P. IPIMAR. 240p.
Gilbert, J.J. 2004. Females from resting eggs and parthenogenetic eggs in the rotifer Brachionus calyciflorus: lipid droplets, starvation resistance and reproduction. Freshwater Biology, 49: 1505-1515. http://dx. doi.org/10.1111/j.1365-2427.2004.01282.x
Haiwei, L.; Dong, Y.; Liu, Y.; Wang, H. 2010. Screening of novel low-cost adsorbents from agricultural residues to remove ammonia nitrogen from aqueous solution. Journal of Hazardous Materials, 178: 1132-136. http://dx. doi.org/10.1016/j.jhazmat.2010.01.117
Hamre, K. 2016. Nutrient profiles of rotifers (Brachionus sp.) and rotifer diets from four different marine fish hatcheries. Aquaculture, 450: 136-142. http.//dx.doi.org/10.1016/j.aquaculture.2015.07.016
Hirayama, K.; Funamoto, H. 1983. Supplementary Effect of Several Nutrients on Nutritive Deficiency of Baker's yeast for Population Growth of the Rotifer Brachionus plicatilis. Bulletin of the Japanese Society of Scientific Fisheries, 49: 505-510. http://dx.doi.org/10.2331/suisan.49.505
Hisano, H.; Sampaio, F.G.; Barros, M.M.; Pezzato, L.E. 2008. Composição nutricional e digestibilidade aparente da levedura íntegra, da levedura autolisada e da parede celular pela tilápia-do-nilo. Ciência Animal Brasileira, 9: 43-49.
Junqueira, O.M.; Duarte ,K.F.; Cancherini, L.C.; Araújo, L.F.; De Oliveira, M.C.; Garcia, E.A. 2009. Chemical composition, metabolizable energy and digestible amino acids values of rice by-products for broilers. Ciência Rural, 39: 2497-2503. http://dx.doi.org/10.1590/S0103-84782009005000197
Kailasam, M; Thirunavukkarasu, A.R.; Ponniah, A.G.; Selvaraj, S.; Stalin, P. 2015. Recent advances in rotifer culture and its application for larviculture of finfishes. In: Perumal, S.; Thirunavukkarasu, A.R.; Pachiappan, P. Advances in Marine and Brackishwater Aquaculture. Springer. pp.17-23.
Khalil, A.; Sergeevich, N.; Borisova, V. 2018. Removal of ammonium from fish farms by biochar obtained from rice straw: Isotherm and kinetic studies for ammonium adsorption. Adsorption Science & Technology, 36: 294-1309. http://dx.doi.org/10.1177/0263617418768944
Kim, H.J.; Lee, J.S.; Hagiwara, A. 2018. Phototactic behavior of live food rotifer Brachionus plicatilis species complex and its significance in larviculture: A review. Aquaculture, 497: 253-259. http://dx.doi.org/10.1016/j.aquaculture.2018.07.070
Kolkovski, S. 2013. Microdiets as alternatives to live feeds for fish larvae in aquaculture: improving the efficiency of feed particle utilization. Advances in Aquaculture Hatchery Technology, pp.203-222. http://dx.doi.org/10.1533/9780857097460.1.203
Koroleff, F.; Palmork, K.H. 1972. Report on the Ices/ Scor nutrient intercalibration experiment. September. ICES, C.M. 1972/C: 21. Hydrography Committee.
Kostopoulou, V.; Vadstein, O. 2007. Growth performance of the rotifers Brachionus plicatilis, B. ‘Nevada’ and B. ‘Cayman’ under different food concentrations. Aquaculture, 273: 449 - 458. http://dx.doi.org/10.1016/j.aquaculture.2007.10.037
Kupski, L.; Cipolatti, E.; Rocha, M.; Oliveira, M.S.; Souza-Soares, L. A.; Badiale-Furlong, E. 2012. Solid-State Fermentation for the Enrichment and Extraction of Proteins and Antioxidant Compounds in Rice Bran by Rhizopus oryzae. Brazilian Archives of Biology Technology, 55: 937-942. http://dx.doi.org/10.1590/S1516-89132012000600018
Lubzens, E.; Zmora, O. 2003. Production and nutritional value of rotifers. In: Stottrup, J.G.; McEvoy, L.A. (eds.) Live Feeds in Marine Aquaculture. Blackwell publishing, Oxford, UK. pp. 17-52. https://doi.org/10.1002/9780470995143.ch2
Massarolo, K.C.; Souza, T.D.; Ribeiro, A.C.; Furlong, E.B.; De S Soares, L.A. 2016. Influence of cultivation Rhizopus oryzae on rice bran on lipid fraction: Fatty acids and phospholipids. Biocatalysis and Agricultural Biotechnology, 8: 204-208. http://dx.doi.org/10.1016/j.bcab.2016.10.002
Massarolo, K.C.; Ribeiro, A.C.; Furlong, E.B.;. De S Soares, L.A. 2017. Effect of particle size of rice bran on gamma-oryzanol content and compounds. Journal of Cereal Science, 75: 54-60. http://dx.doi.org/10.1016/j.jcs.2017.03.012
Monserrat, J.M.; Garcia, M.L.; Ventura-Lima, J.; Gonzalez, M.; Ballesteros, M.L.; Miglioranza, K.S.B.; Ame, M.V.; Wunderlin, D.A. 2014. Antioxidant, phase II and III responses induced by lipoic acid in the fish Jenynsia multidentata (Anablapidae) and its influence on endolsulfan accumulation and toxicity. Pesticide Biochemistry and Physiology, 108: 8-15. http://dx.doi.org/10.1016/j.pestbp.2013.10.009
Muller-Feuga, A. 2000. The role of microalgae in aquaculture: situations and trends. Journal of Applied Phycology, 12: 527-534.
Navarro-Yepes, J.; Burns, M.; Anandhan, A.; Khalimonchuk, O.; Del Razo, L.M.; Quintanilla- Veja, B.; Pappa, A.; Panayiotidis, M.I.; Franco, R. 2014. Oxidative stress, redox signaling, and autophagy: cell death versus survival. Antioxid. Redox Signal, 21: 66í 85.
Norsker, N.H.; Barbosa, M.J.; Vermuí«, M.H.; Wijffels, R.H. 2011. Microalgal productionâ€"A close look at the economics. Biotechnology Advances, 29: 24-27. http://dx.doi:10.1016/j.biotechadv.2010.08.005
Oakes, K.D.; Van Der Kraak, G.J. 2003. Utility of the TBARS assay in detecting oxidative stress in white sucker (Catostomus commersoni) populations exposed to pulp mill effluent. Aquatic Toxicology, 63: 447-463. http://dx.doi.org/10.1016/S0166-445X(02)00204-7
Oliveira, M.S.; Feddern, V.; Kupski, L.; Cipolatti, E.P.; Badiale-Furlong, E.;. De Souza-Soares, L.A. 2010. Physico-chemical characterization of fermented rice bran biomass. CyTA - Journal of Food, 8(3): 229-236. http://dx.doi.org/ 10.1080/19476330903450274
Park, H.Y.; Lee, K.W.; Choi, H.D. 2017. Rice bran constituents: immunomodulatory and therapeutic activities. Food & Function Review, 8: 935-943. http://dx.doi.org/ 10.1039/c6fo01763k
Pelizer, L.H.; Pontieri, M.H.; Moraes, I.O. 2007. Utilização de resíduos agro-industriais em processos biotecnológicos como perspectiva de redução do impacto ambiental. Journal of Technology Management & Innovation, 2: 118í 127.
Rioboo, C.; Prado, R.; Herrero, C.; Cid, A. 2007. Population growth study of the rotifer Brachionus sp. fed with triazine-exposed microalgae. Aquatic Toxicology, 83: 247-253. http://dx.doi.org/10.1016/j.aquatox.2007.04.006
Sarma, S.S.; Larios-Jurado, P.S.; Nandini, S. 2001. Effect of the three food types on the population growth of Brachionus calyciflorus and Brachionus patulus (Rotifera: Brachionidae). Revista de Biologia Tropical, 49: 75-82.
Sevcikova, M.; Modra, H.; Slaninova, A.; Svobodova, Z. 2011. Metals as a cause of oxidative stress in fish: a review. Veterinarni Medicina, 56: 537-546.
Schmidt, C.G.; Cerqueira, M.A.; Vicente, A.A.; Teixeira ,J.Á.; Furlong, E.B. 2015. Rice bran protein-based films enriched by phenolic extract of fermented rice bran and montmorillonite clay. CyTA - Journal of Food, 13: 204-212. http://dx.doi.org/10.1080/19476337.2014.939998
Souza, M.M.; Recart, V.M.; Rocha, M.; Cipolatti, E.P.; Badiale-Furlong, E. 2009. Estudo das condições de extração de compostos fenólicos de cebola (Allium cepa L.). Revista do Instituto Adolfo Lutz, 68(2): 192í 200.
Vijayagopal, P.; Kajal, C.; Iyyapparajanarasimapallavan, G.; Anil, M.K.; Ignatitus, B.; Correia, Ns.; Vijayan, K.K. 2012. Development of live feed enrichment product for marine fish larviculture. Indian Journal of Fisheries, 59: 121í 125.
Wacker, A.; Martin-Creuzburg, D. 2012. Biochemical nutrient requirements of the rotifer Brachionus calyciflorus: co-limitation by sterols and amino acids. Functional Ecology, 26: 1135-1143. http://dx.doi.org/10.1111/j.1365-2435.2012.02047.x
Xie, F.; Koziar, S.A.; Lampi, M.A.; Dixon, D.G.; Norwood, W.P.; Borgmann, U.; Huang, H.; Greenberg, B.M. 2006. Assessment of the toxicity of mixtures of copper, 9, 10â€Âphenanthrenequinone, and phenanthrene to Daphnia magna: Evidence for a reactive oxygen mechanism. Environmental Toxicology and Chemistry, 25: 613-622. http://dx.doi.org/10.1897/05-256R.1
Yamada, E.A.; Alvim, I.D.; Santucci, M.C.C.; Sgarbieri, V.C. 2003. Composição centesimal e valor protéico de levedura residual da fermentação etanólica e de seus derivados. Revista de Nutrição., 16: 423-432. http://dx.doi.org/10.1590/S1415-52732003000400006
Yusof, A.M.; Keat, L.K.; Ibrahim, Z.; Majid, Z.A.; Nizam, N.A. 2010. Kinetic and equilibrium studies of the removal of ammonium ions from aqueous solution by rice husk ash-synthesized zeolite Y and powdered and granulated forms of mordenite. Journal of Hazardous Materials., 174: 380- 385. http://dx.doi.org/10.1016/j.jhazmat.2009.09.063
Zdradek, C.P. 2001. Otimização do crescimento dos fungos comestíveis P. ostreatus e P. sajor caju utilizando resíduos agro-industriais, Rio Grande, Brasil. 139p. (Dissertação de Mestrado. Universidade Federal do Rio Grande).