Economic analysis of intensive and super-intensive Litopenaeus vannamei shrimp production in a Biofloc Technology system
DOI:
https://doi.org/10.20950/10.20950/1678-2305/bip.2022.48.e692Keywords:
Biofloc technology, Investment analysis, Sensitivity analysis, Aquaculture management, Modern aquacultureAbstract
In recent decades, new aquaculture technologies have been developed and improved, such as the Biofloc Technology system, which is considered an alternative to the conventional aquaculture model. This study compared the bioeconomic viability of intensive production in nurseries and super-intensive production of shrimp Litopenaeus vannamei bioflocs greenhouses. The investment for implementing the project was US$ 767,190.18 for intensive production and US$ 807,669.16 for super-intensive production. The analyses showed Net Present Value of US$ 363,718.21 and US$ 385,477.42, Equivalent annual value of US$ 59,830.66 and US$ 63,410.00, Net future value of US$ 965,052.69 and US$ 1,022,786.35, Payback Period 4.12 and 4.11, Discounted payback period 5.64 and 5.63, Profitability Index 1.47 and 1.48, Internal Rate of Return 20.49 and 20.55%, and Modified Internal Rate of Return 14.61 and 14.64%. The investment analysis used in this study showed that super-intensive production in a greenhouse is the best investment option. The development of a new scenario simulating the super-intensive production of shrimp in a Biofloc Technology system, considering land use as a premise, made it possible to observe the possibility of obtaining financial gains in scale, both in the reduction of production costs and in the economic performance of the enterprise. However, the financial contribution for the implementation and operation of the project increased substantially.
References
Avnimelech, Y. 1999. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176: 227-235. https://doi.org/10.1016/S0044-8486(99)00085-X
Avnimelech, Y. 2007. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264: 140-147. https://doi.org/10.1016/j.aquaculture.2006.11.025
Bartolini, F.; Coli, A.; Magrini, A.; Pacini, B. 2016. Measuring environmental efficiency of agricultural sector: a comparison between EU countries. Conference paper at the 4th Annual Conference of the Italian Association of Environmental and Resource Economists (IAERE 2016). Project: IMPRESA, Bologna. p. 21.
Blank, F.F.; Samanez, C.P.; Baidya, T.K.N.; Aiube, F.A.L. 2014. CAPM Condicional: Betas Variantes no Tempo no Mercado Brasileiro. Revista Brasileira de Finanças, 12: 163-199. https://doi.org/10.12660/rbfin.v12n2.2014.13942
Blank, L.; Tarquin, A. 2011. Engineering Economy. McGraw-Hill Education, New York.
Bohnes, F.A.; Hauschild M.Z.; Schlundt J.; Laurent A. 2019. Life cycle assessments of aquaculture systems: a critical review of reported findings with recommendations for policy and system development. Reviews in Aquaculture, 11(4): 1061-1079. https://doi.org/10.1111/raq.12280
Cang, P.; Zhang, M.; Qiao, G.; Sun, Q.; Xu, D.; Li, Q.; Yuan, X.; Liu, W. 2019. Analysis of growth, nutrition and economic profitability of gibel carp (Carassius auratus gibelio a x Ciprinus carpio a) cultured in zero-water exchange system. Pakistan Journal of Zoology, 51: 619. http://doi.org/10.17582/journal.pjz/2019.51.2.619.630
Castilho-Barros, L.; Almeida, F.H.; Henriques, M.B.; Seiffert, W.Q. 2018. Economic evaluation of the commercial production between Brazilian samphire and whiteleg shrimp in an aquaponics system. Aquaculture International, 26: 1187-1206. https://doi.org/10.1007/s10499-018-0277-8
Costa, C.; Fóes, G.; Wasielesky, W.; Poersch, L.H. 2018. Different densities in whiteleg shrimp culture using bioflocs and well water in subtropical climate. Boletim do Instituto de Pesca, 44: 267-279. https://doi.org/10.20950/1678-2305.2018.44.4.324
Cuzon, G.; Lawrence, A.; Gaxiola, G.; Rosas, C.; Guillaume, J. 2004. Nutrition of Litopenaeus vannamei reared in tanks or in ponds. Aquaculture, 235(1-4): 513-551. https://doi.org/10.1016/j.aquaculture.2003.12.022
Di Trapani, A.M.; Sgroi, F.; Testa, R.; Tudisca, S. 2014. Economic comparison between offshore and inshore aquaculture production systems of European sea bass in Italy. Aquaculture, 434: 334-339. https://doi.org/10.1016/j.aquaculture.2014.09.001
FAO í Food and Agriculture Organization of the United Nations. 2010a. The state of food insecurity in the world: addressing food insecurity in protracted crises. Rome: Food and Agriculture Organization of the United Nations. [online] URL: http://www.fao.org/3/i1683e/i1683e00.htm. Accessed: May 13, 2021.
FAO í Food and Agriculture Organization of the United Nations. 2010b. The State of World Fisheries and Aquaculture. Rome: Food and Agriculture Organization of the United Nations. [online] URL: https://www.fao.org/3/i1820e/i1820e.pdf. Accessed: May 13, 2021.
FAO í Food and Agriculture Organization of the United Nations. 2016. The State of World Fisheries and Aquaculture 2016. Contributing to food security and nutrition for all. Rome: Food and Agriculture Organization of the United Nations. [online] URL: https://www.fao.org/3/i5555e/I5555E.pdf. Accessed: May 13, 2021.
FAO í Food and Agriculture Organization of the United Nations. 2018. The State of World Fisheries and Aquaculture 2018 í Meeting the sustainable development goals. Rome: Food and Agriculture Organization of the United Nations. [online] URL: https://www.fao.org/3/i9540en/i9540en.pdf. Accessed: Aug. 22, 2021.
FAO í Food and Agriculture Organization of the United Nations. 2020a. The State of World Fisheries and Aquaculture. Rome: Food and Agriculture Organization of the United Nations. [online] URL: https://www.fao.org/3/ca9229en/ca9229en.pdf. Accessed: Aug. 22, 2021.
FAO í Food and Agriculture Organization of the United Nations. 2020b. Food Outlook í Biannual Report on Global Food Markets. Rome: Food and Agriculture Organization of the United Nations. [online] URL: https://www.fao.org/3/ca9509en/ca9509en.pdf. Accessed: Aug. 22, 2021.
Gaona, C.A.P. Almeida, M.S.; Viau, V.; Poersch, L.H.; Wasielesky, W. 2017. Effect of different total suspended solids levels on a Litopenaeus vannamei (Boone, 1931) BFT culture system during biofloc formation. Aquaculture Research, 48: 1070-1079. https://doi.org/10.1111/are.12949
Gitman, L.J.; Zutter, C.J. 2018. Principles of Managerial Finance. Pearson Education, Boston.
Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. 2010. Food security: the challenge of feeding 9 billion people. Science, 327(5967): 812-818. https://doi.org/10.1126/science.1185383
Gollier, C. 2010. Expected net present value, expected net future value, and the Ramsey rule. Journal of Environmental Economics and Management, 59: 142-148. https://doi.org/10.1016/j.jeem.2009.11.003
Hanson, T.R.; Posadas, B.C.; Samocha, T.; Stokes, A.D.; Losordo, T.M.; Browdy, C.L. 2009. Economic factors critical to the profitability of super-intensive biofloc recirculating shrimp production systems for marine shrimp Litopenaeus vannamei. In: Browdy, C.L.; Jory, D.E. (eds.). Rising tide, proceedings of the special session on sustainable shrimp farming, world aquaculture 2009. The World Aquaculture Society, Louisiana. p. 267-283
Jackson, C.J.; Wang, Y.G. 1998. Modelling growth rate of Penaeus monodon Fabricius in intensively managed ponds: effects of temperature, pond age and stocking density. Aquaculture Research, 29: 27-36. https://doi.org/10.1111/j.1365-2109.1998.tb01358.x
Krummenauer, D.; Peixoto, S.; Cavalli, R.O.; Poersch, L.H.; Wasielesky, W. 2011. Super-intensive Culture of White Shrimp, Litopenaeus vannamei, in a Biofloc Technology System in Southern Brazil at Different Stocking Densities. Journal of the World Aquaculture Society, 42(5): 726-733. https://doi.org/10.1111/j.1749-7345.2011.00507.x
Krummenauer, D.; Júnior, C.A.S.; Poersch, L.H.; Fóes, G.K.; Lara, G.R.; Wasielesky, W. 2012. Cultivo de camarões marinhos em sistema de bioflocos: análise da reutilização da água. Atlí¢ntica (Rio Grande), 34(2): 103-111. https://doi.org/10.5088/atl.2012.34.2.103
Mauladani, S.; Rahmawati, A.I.; Absirin, M.F.; Saputra, R.N.; Pratama, A.F.; Hidayatullah, A.; Dwiarto, A.; Syarif, A.; Junaedi, H.; Cahyadi, D.; Saputra, H.K.H.; Prabowo, W.T.; Kartamiharja, U.K.A.; Noviyanto, A.; Rochman, N.T. 2020. Economic feasibility study of Litopenaeus vannamei shrimp farming: nanobubble investment in increasing harvest productivity. Jurnal Akuakultur Indonesia, 19: 30-38. https://doi.org/10.19027/jai.19.1.30-38
Mazzarol, T.W.; Reboud, S. 2020. Workbook for small business management: theory and practice. Springer, Singapore.
Mejía-Ramírez, M.Á.; Rocha, V.V.; Pérez-Rostro, C.I. 2020. Economic feasibility analysis of small-scale aquaculture of the endemic snail Pomacea Patula catemacensis (Baker 1922) from southeast Mexico. Aquatic Living Resources, 33: 2. https://doi.org/10.1051/alr/2020001
Nguyen, T.A.T.; Nguyen, K.A.T.; Jolly, C. 2019. Is Super-Intensification the Solution to Shrimp Production and Export Sustainability? Sustainability, 11(19): 5277. https://doi.org/10.3390/su11195277
Ostrensky, A.; Borghetti, J.R.; Soto, D. 2008. Aqüicultura no Brasil: o desafio é crescer. Organização das Nações Unidas para a Agricultura e Alimentação, Brasília.
Panigrahi, A.; Saranya, C.; Sundaram, M.; Kannan, S.R.V.; Das, R.R.; Kumar, R.S.; Rajesh, P.; Ottaa, S.K. 2018. Carbon: Nitrogen (C: N) ratio level variation influences microbial community of the system and growth as well as immunity of shrimp (Litopenaeus vannamei) in biofloc based culture system. Fish & Shellfish Immunology, 81: 329-337. https://doi.org/10.1016/j.fsi.2018.07.035
Poersch, L.H.; Almeida, M.S.; Gaona, C.A.; Fóes G.K.; Krummenauer, D.; Romano, L.A.; Wasielesky, W. 2012. Bioflocos: uma alternativa econômica viável para produtores de camarões em viveiros. Panorama da Aquicultura, 22(131): 36-43.
Ponce-Palafox, J.; Martinez-Palacios, C.A.; Ross, L.G. 1997. The effects of salinity and temperature on the growth and survival rates of juvenile white shrimp, Penaeus vannamei, Boone, 1931. Aquaculture, 157: 107-115. https://doi.org/10.1016/S0044-8486(97)00148-8
Rego, M.A.S.; Sabbag, O.J.; Soares, R.; Peixoto, S. 2017a. Financial viability of inserting the biofloc technology in a marine shrimp Litopenaeus vannamei farm: a case study in the state of Pernambuco, Brazil. Aquaculture International, 25: 473-483. https://doi.org/10.1007/s10499-016-0044-7
Rego, M.A.S.; Sabbag, O.J.; Soares, R.; Peixoto, S. 2017b. Risk analysis of the insertion of biofloc technology in a marine shrimp Litopenaeus vannamei production in a farm in Pernambuco, Brazil: a case study. Aquaculture, 469: 67-71. https://doi.org/10.1016/j.aquaculture.2016.12.006
Ren, W.; Li, L.; Dong, S.; Tian, X.; Xue, Y. 2019. Effects of C/N ratio and light on ammonia nitrogen uptake in Litopenaeus vannamei culture tanks. Aquaculture, 498: 123-131. https://doi.org/10.1016/j.aquaculture.2018.08.043
Ruiz Campo, S.; Zuniga-Jara, S. 2018. Reviewing capital cost estimations in aquaculture. Aquaculture Economics & Management, 22: 72-93. https://doi.org/10.1080/13657305.2017.1300839
Sarsour, W.; Sabri, S.R.M. 2020. Evaluating the investment in the Malaysian construction sector in the long-run using the modified internal rate of return: a markov chain approach. Journal of Asian Finance Economics and Business, 7: 281-287. https://doi.org/10.13106/jafeb.2020.vol7.no8.281
Shinji, J.; Nohara, S.; Yagi, N.; Wilder, M. 2019. Bio-economic analysis of super-intensive closed shrimp farming and improvement of management plans: a case study in Japan. Fisheries Science, 85(6): 1055-1065. https://doi.org/10.1007/s12562-019-01357-5
Silva, E.; Silva, J.; Ferreira, F.; Soares, M.; Soares, R.; Peixoto, S. 2015. Influence of stocking density on the zootechnical performance of Litopenaeus vannamei during the nursery phase in a biofloc system. Boletim do Instituto de Pesca, 41(especial): 777-783. https://doi.org/10.20950/1678-2305.2015v41nep777
Siqueira, T.V. 2018. Aquicultura: a nova fronteira para produção de alimentos de forma sustentável. Revista do BNDES, 25(49): 119-170.
Soto, J.O. 2021. Feed intake improvement, gut microbiota modulation and pathogens control by using Bacillus species in shrimp aquaculture. World Journal of Microbiology and Biotechnology, 37: 28. https://doi.org/10.1007/s11274-020-02987-z
Taw, N. 2010. Biofloc technology expanding at white shrimp farms. Global Aquaculture Advocate, New Hampshire.
Teixeira, A.P.; Guerrelhas, A.C.B. 2011. Cultivo Intensivo pode ser a solução para o aumento da produção da carcinicultura? Panorama da Aquicultura, 123. [online] URL: https://panoramadaaquicultura.com.br/cultivo-intensivo-pode-ser-a-solucao-para-o-aumento-da-producao-da-carcinicultura/. Accessed: Aug. 18, 2021.
UN í United Nations. 2019. World population prospects 2019: highlights. Department of Economic and Social Affairs, Population Division (ST/ESA/SER.A/423). United Nations, New York.
Van Wyk, P.; Scarpa, J. 1999. Water quality requirements and management. In: Van Wyk, P.; Davis-Hodgkins, M.; Laramore, R.; Main, K.L.; Mountain, J.; Scarpa, J. Farming marine shrimp in recirculating freshwater systems. Florida Department of Agriculture and Consumer Services, Tallahassee. p.141-162.
Vieira, R.; Barreto, L.; Fonseca, K.; Lordelo, M.; Souza, F.; Evangelista-Barreto, N. 2019. Zootechnical performance evaluation of the use of biofloc technology in nile tilapia fingerling production at different densities. Boletim do Instituto de Pesca, 45(4): e505. https://doi.org/10.20950/1678-2305.2019.45.4.505
Wasielesky, W.; Atwood, H.; Stokes, A.; Browdy, C.L. 2006. Effect of natural production in a zero-exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, 258: 396-403. https://doi.org/10.1016/j.aquaculture.2006.04.030.
Wasielesky, W.; Krummenauer, D.; Fóes, G.; Lara, G.; Gaona, C.A.; Cardozo, A.; Suita, S.; Furtado, P.; Hostins, B.; Zemor, J.; Bezerra, A.; Poersch, L.H. 2016. Cultivo de camarões marinhos em sistema de bioflocos: doze anos de pesquisa e desenvolvimento tecnológico na Universidade Federal do Rio Grande í FURG, RS. Aquaculture Brasil, 1. [online] URL: https://www.aquaculturebrasil.com/artigo/11. Accessed: Sept. 22, 2021.
Yu, Z.; Quan, Y.; Huang, Z.; Wang, H.; Wu, L. 2020. Monitoring oxidative stress, immune response, Nrf2/NF-κB signaling molecules of Rhynchocypris lagowski living in BFT system and exposed to waterborne ammonia. Ecotoxicology and Environmental Safety, 205: 111161. https://doi.org/10.1016/j.ecoenv.2020.111161
Yuan, Y.; Yuan, Y.; Dai, Y.; Gong, Y. 2017. Economic profitability of tilapia farming in China. Aquaculture International, 25(3): 1253-1264. https://doi.org/10.1007/s10499-017-0111-8
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Boletim do Instituto de Pesca
This work is licensed under a Creative Commons Attribution 4.0 International License.