Análise econômica da produção intensiva e superintensiva de camarão Litopenaeus Vannamei em sistema de bioflocos

Autores

DOI:

https://doi.org/10.20950/10.20950/1678-2305/bip.2022.48.e692

Palavras-chave:

Biofloc technology, Investment analysis, Sensitivity analysis, Aquaculture management, Modern aquaculture

Resumo

Nas últimas décadas, novas tecnologias aquí­­colas têm sido desenvolvidas e aprimoradas, como o sistema de bioflocos, considerado uma alternativa ao modelo convencional aquí­­cola. O presente estudo compara a viabilidade bioeconômica da produção intensiva em viveiros com a da produção superintensiva em estufas do camarão Litopenaeus vannamei em bioflocos. O investimento para implantação do projeto foi de US$ 767.190,18 para produção intensiva e US$ 807.669,16 para superintensiva. As análises apresentaram valor presente lí­­quido de US$ 363.718,21 e US$ 385.477,42, valor anual equivalente de US$ 59.830,66 e US$ 63.410,00, valor futuro lí­­quido de US$ 965.052,69 e US$ 1.022.786,35, perí­­odo de payback 4,12 e 4,11, payback descontado 5,64 e 5,63, í­­ndice de lucratividade 1,47 e 1,48, taxa interna de retorno 20,49 e 20,55% e taxa interna de retorno modificada 14,61 e 14,64%. As análises de investimentos neste estudo mostraram que a produção superintensiva em estufas é a melhor opção. O desenvolvimento de um novo cenário simulando a produção superintensiva de camarões em sistema de bioflocos, considerando o uso da terra como premissa, permitiu observar a possibilidade de ganhos financeiros em escala tanto na redução dos custos de produção quanto no desempenho econômico do empreendimento. No entanto, a contribuição financeira para implantar e operar o projeto aumentou substancialmente.

Referências

Almeida, M.S.; Mauad, J.R.C.; Gimenes, R.M.T.; Gaona, C.A.P.; Furtado, P.S.; Poersch, L.H.; Wasielesky, W.; Fóes, G.K. 2021. Bioeconomic analysis of the production of marine shrimp in greenhouses using the biofloc technology system. Aquaculture International, 29: 723-741. https://doi.org/10.1007/s10499-021-00653-1

Avnimelech, Y. 1999. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176: 227-235. https://doi.org/10.1016/S0044-8486(99)00085-X

Avnimelech, Y. 2007. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264: 140-147. https://doi.org/10.1016/j.aquaculture.2006.11.025

Bartolini, F.; Coli, A.; Magrini, A.; Pacini, B. 2016. Measuring environmental efficiency of agricultural sector: a comparison between EU countries. Conference paper at the 4th Annual Conference of the Italian Association of Environmental and Resource Economists (IAERE 2016). Project: IMPRESA, Bologna. p. 21.

Blank, F.F.; Samanez, C.P.; Baidya, T.K.N.; Aiube, F.A.L. 2014. CAPM Condicional: Betas Variantes no Tempo no Mercado Brasileiro. Revista Brasileira de Finanças, 12: 163-199. https://doi.org/10.12660/rbfin.v12n2.2014.13942

Blank, L.; Tarquin, A. 2011. Engineering Economy. McGraw-Hill Education, New York.

Bohnes, F.A.; Hauschild M.Z.; Schlundt J.; Laurent A. 2019. Life cycle assessments of aquaculture systems: a critical review of reported findings with recommendations for policy and system development. Reviews in Aquaculture, 11(4): 1061-1079. https://doi.org/10.1111/raq.12280

Cang, P.; Zhang, M.; Qiao, G.; Sun, Q.; Xu, D.; Li, Q.; Yuan, X.; Liu, W. 2019. Analysis of growth, nutrition and economic profitability of gibel carp (Carassius auratus gibelio a x Ciprinus carpio a) cultured in zero-water exchange system. Pakistan Journal of Zoology, 51: 619. http://doi.org/10.17582/journal.pjz/2019.51.2.619.630

Castilho-Barros, L.; Almeida, F.H.; Henriques, M.B.; Seiffert, W.Q. 2018. Economic evaluation of the commercial production between Brazilian samphire and whiteleg shrimp in an aquaponics system. Aquaculture International, 26: 1187-1206. https://doi.org/10.1007/s10499-018-0277-8

Costa, C.; Fóes, G.; Wasielesky, W.; Poersch, L.H. 2018. Different densities in whiteleg shrimp culture using bioflocs and well water in subtropical climate. Boletim do Instituto de Pesca, 44: 267-279. https://doi.org/10.20950/1678-2305.2018.44.4.324

Cuzon, G.; Lawrence, A.; Gaxiola, G.; Rosas, C.; Guillaume, J. 2004. Nutrition of Litopenaeus vannamei reared in tanks or in ponds. Aquaculture, 235(1-4): 513-551. https://doi.org/10.1016/j.aquaculture.2003.12.022

Di Trapani, A.M.; Sgroi, F.; Testa, R.; Tudisca, S. 2014. Economic comparison between offshore and inshore aquaculture production systems of European sea bass in Italy. Aquaculture, 434: 334-339. https://doi.org/10.1016/j.aquaculture.2014.09.001

FAO í  Food and Agriculture Organization of the United Nations. 2010a. The state of food insecurity in the world: addressing food insecurity in protracted crises. Rome: Food and Agriculture Organization of the United Nations. [online] URL: http://www.fao.org/3/i1683e/i1683e00.htm. Accessed: May 13, 2021.

FAO í  Food and Agriculture Organization of the United Nations. 2010b. The State of World Fisheries and Aquaculture. Rome: Food and Agriculture Organization of the United Nations. [online] URL: https://www.fao.org/3/i1820e/i1820e.pdf. Accessed: May 13, 2021.

FAO í  Food and Agriculture Organization of the United Nations. 2016. The State of World Fisheries and Aquaculture 2016. Contributing to food security and nutrition for all. Rome: Food and Agriculture Organization of the United Nations. [online] URL: https://www.fao.org/3/i5555e/I5555E.pdf. Accessed: May 13, 2021.

FAO í  Food and Agriculture Organization of the United Nations. 2018. The State of World Fisheries and Aquaculture 2018 í  Meeting the sustainable development goals. Rome: Food and Agriculture Organization of the United Nations. [online] URL: https://www.fao.org/3/i9540en/i9540en.pdf. Accessed: Aug. 22, 2021.

FAO í  Food and Agriculture Organization of the United Nations. 2020a. The State of World Fisheries and Aquaculture. Rome: Food and Agriculture Organization of the United Nations. [online] URL: https://www.fao.org/3/ca9229en/ca9229en.pdf. Accessed: Aug. 22, 2021.

FAO í  Food and Agriculture Organization of the United Nations. 2020b. Food Outlook í  Biannual Report on Global Food Markets. Rome: Food and Agriculture Organization of the United Nations. [online] URL: https://www.fao.org/3/ca9509en/ca9509en.pdf. Accessed: Aug. 22, 2021.

Gaona, C.A.P. Almeida, M.S.; Viau, V.; Poersch, L.H.; Wasielesky, W. 2017. Effect of different total suspended solids levels on a Litopenaeus vannamei (Boone, 1931) BFT culture system during biofloc formation. Aquaculture Research, 48: 1070-1079. https://doi.org/10.1111/are.12949

Gitman, L.J.; Zutter, C.J. 2018. Principles of Managerial Finance. Pearson Education, Boston.

Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. 2010. Food security: the challenge of feeding 9 billion people. Science, 327(5967): 812-818. https://doi.org/10.1126/science.1185383

Gollier, C. 2010. Expected net present value, expected net future value, and the Ramsey rule. Journal of Environmental Economics and Management, 59: 142-148. https://doi.org/10.1016/j.jeem.2009.11.003

Hanson, T.R.; Posadas, B.C.; Samocha, T.; Stokes, A.D.; Losordo, T.M.; Browdy, C.L. 2009. Economic factors critical to the profitability of super-intensive biofloc recirculating shrimp production systems for marine shrimp Litopenaeus vannamei. In: Browdy, C.L.; Jory, D.E. (eds.). Rising tide, proceedings of the special session on sustainable shrimp farming, world aquaculture 2009. The World Aquaculture Society, Louisiana. p. 267-283

Jackson, C.J.; Wang, Y.G. 1998. Modelling growth rate of Penaeus monodon Fabricius in intensively managed ponds: effects of temperature, pond age and stocking density. Aquaculture Research, 29: 27-36. https://doi.org/10.1111/j.1365-2109.1998.tb01358.x

Krummenauer, D.; Peixoto, S.; Cavalli, R.O.; Poersch, L.H.; Wasielesky, W. 2011. Super-intensive Culture of White Shrimp, Litopenaeus vannamei, in a Biofloc Technology System in Southern Brazil at Different Stocking Densities. Journal of the World Aquaculture Society, 42(5): 726-733. https://doi.org/10.1111/j.1749-7345.2011.00507.x

Krummenauer, D.; Júnior, C.A.S.; Poersch, L.H.; Fóes, G.K.; Lara, G.R.; Wasielesky, W. 2012. Cultivo de camarões marinhos em sistema de bioflocos: análise da reutilização da água. Atlí­¢ntica (Rio Grande), 34(2): 103-111. https://doi.org/10.5088/atl.2012.34.2.103

Mauladani, S.; Rahmawati, A.I.; Absirin, M.F.; Saputra, R.N.; Pratama, A.F.; Hidayatullah, A.; Dwiarto, A.; Syarif, A.; Junaedi, H.; Cahyadi, D.; Saputra, H.K.H.; Prabowo, W.T.; Kartamiharja, U.K.A.; Noviyanto, A.; Rochman, N.T. 2020. Economic feasibility study of Litopenaeus vannamei shrimp farming: nanobubble investment in increasing harvest productivity. Jurnal Akuakultur Indonesia, 19: 30-38. https://doi.org/10.19027/jai.19.1.30-38

Mazzarol, T.W.; Reboud, S. 2020. Workbook for small business management: theory and practice. Springer, Singapore.

Mejí­­a-Ramí­­rez, M.Á.; Rocha, V.V.; Pérez-Rostro, C.I. 2020. Economic feasibility analysis of small-scale aquaculture of the endemic snail Pomacea Patula catemacensis (Baker 1922) from southeast Mexico. Aquatic Living Resources, 33: 2. https://doi.org/10.1051/alr/2020001

Nguyen, T.A.T.; Nguyen, K.A.T.; Jolly, C. 2019. Is Super-Intensification the Solution to Shrimp Production and Export Sustainability? Sustainability, 11(19): 5277. https://doi.org/10.3390/su11195277

Ostrensky, A.; Borghetti, J.R.; Soto, D. 2008. Aqüicultura no Brasil: o desafio é crescer. Organização das Nações Unidas para a Agricultura e Alimentação, Brasí­­lia.

Panigrahi, A.; Saranya, C.; Sundaram, M.; Kannan, S.R.V.; Das, R.R.; Kumar, R.S.; Rajesh, P.; Ottaa, S.K. 2018. Carbon: Nitrogen (C: N) ratio level variation influences microbial community of the system and growth as well as immunity of shrimp (Litopenaeus vannamei) in biofloc based culture system. Fish & Shellfish Immunology, 81: 329-337. https://doi.org/10.1016/j.fsi.2018.07.035

Poersch, L.H.; Almeida, M.S.; Gaona, C.A.; Fóes G.K.; Krummenauer, D.; Romano, L.A.; Wasielesky, W. 2012. Bioflocos: uma alternativa econômica viável para produtores de camarões em viveiros. Panorama da Aquicultura, 22(131): 36-43.

Ponce-Palafox, J.; Martinez-Palacios, C.A.; Ross, L.G. 1997. The effects of salinity and temperature on the growth and survival rates of juvenile white shrimp, Penaeus vannamei, Boone, 1931. Aquaculture, 157: 107-115. https://doi.org/10.1016/S0044-8486(97)00148-8

Rego, M.A.S.; Sabbag, O.J.; Soares, R.; Peixoto, S. 2017a. Financial viability of inserting the biofloc technology in a marine shrimp Litopenaeus vannamei farm: a case study in the state of Pernambuco, Brazil. Aquaculture International, 25: 473-483. https://doi.org/10.1007/s10499-016-0044-7

Rego, M.A.S.; Sabbag, O.J.; Soares, R.; Peixoto, S. 2017b. Risk analysis of the insertion of biofloc technology in a marine shrimp Litopenaeus vannamei production in a farm in Pernambuco, Brazil: a case study. Aquaculture, 469: 67-71. https://doi.org/10.1016/j.aquaculture.2016.12.006

Ren, W.; Li, L.; Dong, S.; Tian, X.; Xue, Y. 2019. Effects of C/N ratio and light on ammonia nitrogen uptake in Litopenaeus vannamei culture tanks. Aquaculture, 498: 123-131. https://doi.org/10.1016/j.aquaculture.2018.08.043

Ruiz Campo, S.; Zuniga-Jara, S. 2018. Reviewing capital cost estimations in aquaculture. Aquaculture Economics & Management, 22: 72-93. https://doi.org/10.1080/13657305.2017.1300839

Sarsour, W.; Sabri, S.R.M. 2020. Evaluating the investment in the Malaysian construction sector in the long-run using the modified internal rate of return: a markov chain approach. Journal of Asian Finance Economics and Business, 7: 281-287. https://doi.org/10.13106/jafeb.2020.vol7.no8.281

Shinji, J.; Nohara, S.; Yagi, N.; Wilder, M. 2019. Bio-economic analysis of super-intensive closed shrimp farming and improvement of management plans: a case study in Japan. Fisheries Science, 85(6): 1055-1065. https://doi.org/10.1007/s12562-019-01357-5

Silva, E.; Silva, J.; Ferreira, F.; Soares, M.; Soares, R.; Peixoto, S. 2015. Influence of stocking density on the zootechnical performance of Litopenaeus vannamei during the nursery phase in a biofloc system. Boletim do Instituto de Pesca, 41(especial): 777-783. https://doi.org/10.20950/1678-2305.2015v41nep777

Siqueira, T.V. 2018. Aquicultura: a nova fronteira para produção de alimentos de forma sustentável. Revista do BNDES, 25(49): 119-170.

Soto, J.O. 2021. Feed intake improvement, gut microbiota modulation and pathogens control by using Bacillus species in shrimp aquaculture. World Journal of Microbiology and Biotechnology, 37: 28. https://doi.org/10.1007/s11274-020-02987-z

Taw, N. 2010. Biofloc technology expanding at white shrimp farms. Global Aquaculture Advocate, New Hampshire.

Teixeira, A.P.; Guerrelhas, A.C.B. 2011. Cultivo Intensivo pode ser a solução para o aumento da produção da carcinicultura? Panorama da Aquicultura, 123. [online] URL: https://panoramadaaquicultura.com.br/cultivo-intensivo-pode-ser-a-solucao-para-o-aumento-da-producao-da-carcinicultura/. Accessed: Aug. 18, 2021.

UN í  United Nations. 2019. World population prospects 2019: highlights. Department of Economic and Social Affairs, Population Division (ST/ESA/SER.A/423). United Nations, New York.

Van Wyk, P.; Scarpa, J. 1999. Water quality requirements and management. In: Van Wyk, P.; Davis-Hodgkins, M.; Laramore, R.; Main, K.L.; Mountain, J.; Scarpa, J. Farming marine shrimp in recirculating freshwater systems. Florida Department of Agriculture and Consumer Services, Tallahassee. p.141-162.

Vieira, R.; Barreto, L.; Fonseca, K.; Lordelo, M.; Souza, F.; Evangelista-Barreto, N. 2019. Zootechnical performance evaluation of the use of biofloc technology in nile tilapia fingerling production at different densities. Boletim do Instituto de Pesca, 45(4): e505. https://doi.org/10.20950/1678-2305.2019.45.4.505

Wasielesky, W.; Atwood, H.; Stokes, A.; Browdy, C.L. 2006. Effect of natural production in a zero-exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, 258: 396-403. https://doi.org/10.1016/j.aquaculture.2006.04.030.

Wasielesky, W.; Krummenauer, D.; Fóes, G.; Lara, G.; Gaona, C.A.; Cardozo, A.; Suita, S.; Furtado, P.; Hostins, B.; Zemor, J.; Bezerra, A.; Poersch, L.H. 2016. Cultivo de camarões marinhos em sistema de bioflocos: doze anos de pesquisa e desenvolvimento tecnológico na Universidade Federal do Rio Grande í  FURG, RS. Aquaculture Brasil, 1. [online] URL: https://www.aquaculturebrasil.com/artigo/11. Accessed: Sept. 22, 2021.

Yu, Z.; Quan, Y.; Huang, Z.; Wang, H.; Wu, L. 2020. Monitoring oxidative stress, immune response, Nrf2/NF-κB signaling molecules of Rhynchocypris lagowski living in BFT system and exposed to waterborne ammonia. Ecotoxicology and Environmental Safety, 205: 111161. https://doi.org/10.1016/j.ecoenv.2020.111161

Yuan, Y.; Yuan, Y.; Dai, Y.; Gong, Y. 2017. Economic profitability of tilapia farming in China. Aquaculture International, 25(3): 1253-1264. https://doi.org/10.1007/s10499-017-0111-8

Downloads

Publicado

2022-08-08

Edição

Seção

Artigo cientí­fico