Biodiversity, spatial, and seasonal distribution of the zooplankton community in semi-intensive fish farms in Rondônia state, Brazil
DOI:
https://doi.org/10.20950/1678-2305/bip.2024.50.e918Keywords:
Agroecosystem, Copepoda, Diversity indices, Ostracoda, SeasonalityAbstract
In this study we determined the spatial and seasonal distribution (rainfall and drought) of the zooplankton community in 30 fish farms in the microregions of Vale do Jamari and Central-East of Rondônia. The experiment was organized in a completely randomized factorial scheme. The species were considered in composition, richness, frequency of occurrence, relative abundance and diversity indices (H’, J and S). There were records of greater richness of Copepoda (550 to 1214), Ostracoda (360 to 989.6), Rotifera (71 to 431) and Cladocera (344 to 990). In the Jamari Valley, the most abundant species (Individuals per 100 mL) were Ostracoda (323), Copepoda (160) and Rotifera (111). In the Center- East, they were Copepoda (287), Rotifera (108) and Ostracoda (106). In the two microregions there were variations in the seasonal distribution, except for the populations of the phylum Cloadocera. The diversity indices differed, registering a greater diversity of populations of Ostracoda in the Jamari Valley and Copepoda in the Center-East and in the rainy season.
References
Associação Brasileira da Piscicultura (Peixe BR) (2023). Anuário 2023: Peixe BR da Piscicultura. PEIXE BR.
Bai, X., Jiang, Z., Fang, Y., Zhu, L., & Feng, J. (2022). Effects of environmental concentrations of total phosphorus on the plankton community structure and function in a microcosm study. International Journal of Environmental Research and Public Health, 19(14), 8412. https://doi.org/10.3390/ijerph19148412
Balayla, D., & Moss, B. (2004). Relative importance of grazing on algae by plant-associated and open-water microcrustacea (Cladocera). Archiv für Hydrobiologie, 161(2), 199-224. https://doi.org/10.1127/0003-9136/2004/0161-0199
Belfiore, A. P., Böing, W., Koop, J., & Neubauer, I. (2002). Topdown control of phytoplankton: the role of time scale, lake depth and trophic state. Freshwater Biology, 47(12), 2282- 2295. https://doi.org/10.1046/j.1365-2427.2002.00989.x
Belfiore, A. P., Buley, R. P., Fernandez-Figueroa, E. G., Gladfelter, M. F., & Wilson, A. E. (2021). Zooplankton as an alternative method for controlling phytoplankton in catfish pond aquaculture. Aquaculture Reports, 21, 100897. https://doi.org/10.1016/j.aqrep.2021.100897
Bohus, A., Gál, B., Barta, B., Szivák, I., Karádi-Kovács, K., Boda, P., Padisák, J., & Schmera, D. (2023). Effects of urbanization-induced local alterations on the diversity and assemblage structure of macroinvertebrates in loworder streams. Hydrobiologia, 850, 881-899. https://doi.org/10.1007/s10750-022-05130-1
Bos, D. G., Cumming, B. F., Watters, C. E., & Smol, J. P. (1996). The relationship between zooplankton, conductivity and lake-water ionic composition in 111 lakes from the Interior Plateau of British Columbia, Canada. International Journal of Salt Lake Research, 5, 1-15. https://doi.org/10.1007/BF01996032
Cantonati, M., Poikane, S., Pringle, C. M., Stevens, L. E., Turak, E., Heino, J., Richardson, J. S., Bolpagni, R., Borrini, A.,Cid, N., Čtvrtlíková, M., Galassi, D. M. P., Hájek, M., Hawes, I., Levkov, Z., Naselli-Flores, L., Saber, A. A.,... & Znachor, P. (2020). Characteristics, main impacts, and stewardship of natural and artificial freshwater environments: consequences for biodiversity conservation. Water, 12(1), 260. https://doi.org/10.3390/w12010260
Casanova, S. M. C., & Henry, R. (2004). Longitudinal distribution of Copepoda populations in the transition zone of Paranapanema river and Jurumirim Reservoir (São Paulo, Brazil) and interchange with two lateral lakes. Brazilian Journal of Biology, 64(1), 11-26. https://doi.org/10.1590/S1519-69842004000100003
Castilho-Noll, M. S. M., Câmara, C. F., Chicone, M. F., & Shibata, E. H. (2010). Pelagic and litoral cladocerans (Crustacea, Anomopoda; Ctenopoda) from reservoirs of the Northwest of São Paulo State, Brazil. Biota Neotropica, 10(1), 21-30. https://doi.org/10.1590/S1676-06032010000100001
Chen, G., Dalton, C., & Taylor, D. (2010). Cladocera as indicators of trophic state in Irish lakes. Journal of Paleolimnology, 44(2), 465-481. https://doi.org/10.1007/s10933-010-9428-2
Costa, R. L., Figueiredo, F. M., Bay, M., Queiroz, C. B., & Bay-Hurtado, F. (2016). Qualitative analysis of phytoplankton in a Fish farming of Alvorada d´Oeste, Rondônia, Brazil. Acta Agronómica, 64(3), 260-267. https://www.researchgate.net/publication/280044025_Qualitative_analysis_of_phytoplankton_in_a_Fish_farming_of_Alvorada_dOeste_Rondonia_Brazil#fullTextFileContent
Cottenie, K., Nuytten, N., Michels, E., & De Meester, L. (2001). Zooplankton community structure and environmental conditions in a set of interconnected ponds. Hydrobiologia, 442(1), 339-350. https://doi.org/10.1023/A:1017505619088
Dias, J. D., Simões, N. R., & Bonecker, C. C. (2012). Zooplankton community resilience and aquatic environmental stability on aquaculture practices: a study using net cages. Brazilian Journal of Biology, 72(1), 1-11. https://doi.org/10.1590/S1519-69842012000100001
Fassoni-Andrade, A. C., Fleischmann, A. S., Papa, F., Paiva, R. C. D., Wongchuig, S., Melack, J. M., Moreira, A. A., Paris, A., Ruhoff, A. L., Barbosa, C. C. F., Maciel, D. A., Novo, E. M. L. M., Durand, F., Frappart, F., Abrahão, G. M., Ferreira-Ferreira, J., Espinoza, J. C., Santos, L. L., ... & Pellet, V. (2021). Amazon hydrology from space: scientific advances and future challenges. Reviews of Geophysics, 59(4), e2020RG000728. https://doi.org/10.1029/2020RG000728
Figueiredo, J. A., Noriega, C. D., Oliveira, E. M. C. de, Neto, R. R., Barroso, G. F., & Araújo Filho, M. (2014). Avaliação biogeoquímica de águas fluviais com ênfase no comportamento dos compostos de nitrogênio e fósforo total para diagnoses provenientes do sistema aquático Bacia do Rio Doce, no Espírito Santo. Geochimica Brasiliensis, 28(2), 215-226. https://doi.org/10.5327/Z0102-9800201400020009
Gilbert, J. J. (2020). Variation in the life cycle of monogonont rotifers: Commitment to sex and emergence from diapause. Freshwater Biology, 65(4), 786-810. https://doi.org/10.1111/fwb.13440
Hall, C. A. M., & Lewandowska, A. M. (2022). Zooplankton dominance shift in response to climate-driven salinity change: a mesocosm study. Frontiers in Marine Science, 9, 861297. https://doi.org/10.3389/fmars.2022.861297
Helenius, L. K., Padrós, A. A., Leskinen, E., Lehtonen, H., & Nurminen, L. (2015). Strategies of zooplanktivory shape the dynamics and diversity of littoral plankton communities: a mesocosm approach. Ecology and Evolution, 5(10), 2021- 2035. https://doi.org/10.1002/ece3.1488
Hernández, J. F. P.; Motavita, M. C, R.; Castillo, B. E. H.; Ramos, M. C. D. (2021). Zooplancton: Biodiversidad acuática del Sitio Demostrativo de Ecohidrología PHI-UNESCO DRMI-Sitio Ramsar Complejo Cenagoso de Zapatosa (Vol. 3). Fundación Natura de Colombia / Instituto de Hidrología, Meteorología y Estudios Ambientales.
Hobaek, A., Manca, M., & Andersen, T. (2002). Factors influencing species richness in lacustrine zooplankton. Acta Oecologica, 23(3), 155-163. https://doi.org/10.1016/S1146-609X(02)01147-5
Hussain, M. B., Laabir, M., & Yahia, M. N. D. (2020). A novel index based on planktonic copepod reproductive traits as a tool for marine ecotoxicology studies. Science of the Total Environment, 727, 138621. https://doi.org/10.1016/j.scitotenv.2020.138621
Ibrahim, A. N. A., Castilho-Noll, M. S. M., & Valenti, W. C. (2023). Zooplankton community dynamics in response to water trophic state in integrated multitrophic aquaculture. Boletim do Instituto de Pesca, 49, e730. https://doi.org/10.20950/1678-2305/bip.2023.49.e730
INPE. Instituto Nacional de Pesquisas Espaciais. Centro de Previsão de Tempo e Estudos Climáticos (CPTEC). Estação meteorológica de Ouro Preto do Oeste – RO: CPTEC, 2022.
Kadiene, E. U., Bialais, C., Ouddane, B., Hwang, J.-S., & Souissi, S. (2017). Differences in lethal response between male and female calanoid copepods and life cycle traits to cadmium toxicity. Ecotoxicology, 26, 1227-1239. https://doi.org/10.1007/s10646-017-1848-6
Lemessa, F., Simane, B., Seyoum, A., & Gebresenbet, G. (2023). Assessment of the impact of industrial wastewater on the water quality of rivers around the Bole Lemi Industrial Park (BLIP), Ethiopia. Sustainability, 15(5), 4290. https://doi.org/10.3390/su15054290
Lobo, E., & Leighton, G. (1986). Estructuras comunitarias de las fitocenosis planctónicas de los sistemas de desembocaduras de ríos y esteros de la zona central de Chile. Revista Biología Marina, 22(1), 1-29.
Mateucci, S. D., & Colma, A. (1982). Metodología para el estudio de la vegetación. OEA. (Série de biologia, 22.) Mindat (2024). Retrieved from https://www.mindat.org/search.php?search=taxon
Necker, L., Brendonck, L., van Vuren, J., Wepener, V., & Smit, N. J. (2021). Aquatic invertebrate community resilience and recovery in response to a supra-seasonal drought in an ecologically important naturally saline lake. Water, 13(7), 948. https://doi.org/10.3390/w13070948
Nunes, Y. B. S., Cutrim, M. V. J., Diaz, X. F. G., Campos, P. N., Palheta, G. D. A., & Melo, N. F. A. C. (2023). Characterization of the zooplankton in the continental shelf of the Brazilian Equatorial Atlantic. Boletim do Instituto de Pesca, 48, e767. https://doi.org/10.20950/1678-2305/bip.2022.48.e767
Pereira, A. P. S., Vasco, A. N., Britto, F. B., Méllo Júnior, A. V., & Nogueira, E. M. S. (2011). Biodiversity and community structure of zooplankton in the Sub-basin of Rio Poxim, Sergipe, Brazil. Ambiente & Água, 6(2), 191-205. https://doi.org/10.4136/ambi-agua.194
Picapedra, P. H. S., Fernandes, C., Baumgartner, G., & Sanches, P. V. (2021). Zooplankton communities and their relationship with water quality in eight reservoirs from the midwestern and southeastern regions of Brazil. Brazilian Journal of Biology, 81(3), 701-713. https://doi.org/10.1590/1519-6984.230064
Resende, N. da S., Santos, J. B. O., Josué, I. I. P., Barros, N. O., & Cardoso, S. J. (2022). Comparing spatio temporal dynamics of functional and taxonomic diversity of phytoplankton community in tropical cascading reservoirs. Frontiers in Environmental Science, 10, 903180. https://doi.org/10.3389/fenvs.2022.903180
Rico, A., Oliveira, R., Silva de Souza Nunes, G., Rizzi, C., Villa, S., De Caroli Vizioli, B., Montagner, C. C., & Waichman, A. V. (2022). Ecological risk assessment of pesticides in urban streams of the Brazilian Amazon. Chemosphere, 291(Part 1), 132821. https://doi.org/10.1016/j.chemosphere.2021.132821
Rietzler, A. C., Matsumura-Tundisi, T., & Tundisi, J. G. (2002). Life cycle, feeding and adaptive strategy implications on the co-occurrence of Argyrodiaptomus furcatus and Notodiaptomus iheringi in Lobo-Broa Reservoir (SP, Brazil). Brazilian Journal of Biology, 62(1), 93-105. https://doi.org/10.1590/S1519-69842002000100012
Rosa, J. C. L., Batista, L. L., & Monteiro-Ribas, W. M. (2020). Tracking of spatial changes in the structure of the zooplankton community according to multiple abiotic factors along a hypersaline lagoon. Nauplius, 28, e2020012. https://doi.org/10.1590/2358-2936e2020012
Santos, L. A., Silva, A. C. S., Pereira, P. P., Araújo, R. M. G., & Ghidini, A. R. (2022). Zooplankton diversity in Acre state, Amazon, Brazil: an overview of previous studies. Biota Neotropica, 22(1), e20201132. https://doi.org/10.1590/1676-0611-BN-2020-1132
Schmidt, J., Andrade, P. D. B., & Padial, A. A. (2020). Zooplankton trajectory before, during and after a hydropower dam construction. Acta Limnologica Brasiliensia, 32, e18. https://doi.org/10.1590/S2179-975X9519
Seminara, M., Vagaggini, D., & Stoch, F. (2016). A comparison of Cladocera and Copepoda as indicators of hydroperiod length in Mediterranean ponds. Hydrobiologia, 782(1), 71-80. https://doi.org/10.1007/s10750-016-2693-y
Setúbal, R. B., & Bozelli, R. L. (2011). Zooplankton functional complementarity between temporary and permanent environments. Acta Limnologica Brasiliensia, 33, e3. https://doi.org/10.1590/S2179-975X5620
Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379 423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
Teramoto, M., Hamamoto, T., Liang, N., Taniguchi, T., Ito, T. Y., Hu, R., & Yamanaka, N. (2022). Abiotic and biotic factors dune ecosystem in western Japan. Scientific Reports, 12, 14320. https://doi.org/10.1038/s41598-022-17787-8
Tóth, F., Zsuga, K., Kerepeczki, É., Berzi-Nagy, L., Körmöczi, L., & Lövei, G. L. (2020). Seasonal differences in taxonomic diversity of rotifer communities in a Hungarian lowland oxbow lake exposed to aquaculture effluent. Water, 12(5), 1300. https://doi.org/10.3390/w12051300
Xiong, W., Huang, X., Chen, Y., Fu, R., Du, X., Chen, X., & Zhan, A. (2020). Zooplankton biodiversity monitoring in polluted freshwater ecosystems: A technical review. Environmental Science and Ecotechnology, 1, 100008. https://doi.org/10.1016/j.ese.2019.100008
Yin, L., Ji, Y., Zhang, Y., Chong, L., & Chen, L. (2018). Rotifer community structure and its response to environmental factors in the Backshore Wetland of Expo Garden, Shanghai. Aquaculture and Fisheries, 3(2), 90-97. https://doi.org/10.1016/j.aaf.2017.11.001
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Vinicius Perez Pedroti, Jerônimo Vieira Dantas Filho, Bruna Lucieny Temponi Santos, Maria Mirtes de Lima Pinheiro, Raniere Garcez Costa Sousa, Ed Johnny da Rosa Prado, Francisco Carlos da Silva, Sandro de Vargas Schons
This work is licensed under a Creative Commons Attribution 4.0 International License.