Treatment of efluent from ponds of Litopenaeus vannamei shrimp rearing through nutrients sedimentation and absortion with the macroalga Ulva fasciata


  • Roberto RAMOS Departamento de Acuicultura, Universidad de Antofagasta, Chile
  • Luis VINATEA Laboratório de Camarí­µes Marinhos (LCM), Departamento de Aq-­¼icultura, CCA, Universidade Federal de Santa Catarina, Brasil
  • Edemar R. ANDREATTA Laboratório de Camarí­µes Marinhos (LCM), Departamento de Aq-­¼icultura, CCA, Universidade Federal de Santa Catarina, Brasil -
  • Rejane H. R. da COSTA Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Santa Catarina, Brasil


effluents, shrimp farming, macroalgae, sedimentation


Efficiency to remove suspended solids and dissolved nutrients from Litopenaeus vannamei marine shrimp effluent through sedimentation and absorption with macroalga (Ulva fasciata) was assessed using three settling times: 6, 12 and 24 hours. The water quality parameters analyzed were: dissolved oxygen (mg/L), salinity (‰), pH, temperature (°C), turbidity (NTU), BOD5 (mg/L), total suspended solids (mg/L), ammonia (mg/L N-NH4+), nitrite (mg/L N-NO2), nitrate (mg/L N-NO3) and orthophosphates (mg/L PO4-3). Results suggest that highest efficiency in sedimentation stage were found when effluent was left standing for 6 hours, with removal of 94.0%, 93.6%, 41.6%, 74.3%, 47.4% and 56.1% of chlorophyll a, BOD5, N-NH3, N-NO2, N-NO3 and P-PO4 , respectively. The best result to remove turbidity from raw effluent was found in the 24 hours treatment with 95.5% removal rate, when compared with rates of 93.5% for 12 hours and 78.4% for 6 hours. In the nutrient absorption stage, highest removal rates were found in the 6 hours treatment with 23.7%, 47.1%, 7.1%, 37.0% and 48.4% for BOD5, N-NH3, N-NO2, N-NO3 and P-PO4, respectively, when compared to the control tank. Finally, integrating sedimentation and absorption, all treatments showed high removal efficiency. Turbidity for the three settling times tested was of 95.8% (6 h), 96.6% (12 h) and 96.8% (24 h). In the final removal of BOD5 the best result was observed in the 6 hours treatment, with 90.7% removal rate, when compared to the 12 hours (85.6%) and the 24 hours (81.4%) treatments. In the removal of N-NH3 (57.1 í  59.8 and 57.4% for 6, 12 and 24 h), N-NO2 (64.9 í  62.2 and 59.5% for 6, 12 and 24 h), N-NO3 (37.3 í  21.0 and 41.1% for 6, 12 and 24 h), and P-PO4 (75.9 í  76.9 and 77.7% for 6, 12 and 24 h) results were similar. The present study demonstrates that the sedimentation and macroalgae absorption processes tested are efficient methods to remove nutrients from shrimp farm effluents.



ABCC. 2004. Carcinicultura Brasileira. O censo de 2003.Panorama da Aqüicultura. Março í  Abril 2004.

Alencar, J. R.; Horta, P.; Emoto, S.; Dutra,F.; Weiss, L. and Bouzon, Z. 2003. Evaluation of Ulva lactuca (Ulvales, Chlorophyta) growth in different salinities: an alternative for the treatment of carciniculture effluents in the south of Brazil In: Book of Abstract, V. 2, World Aquaculture Meeting, May 19-23, 2003 Salvador, Brasil.

APHA. Standard Methods for the Examination of Water and Wasterwater. American Public Health Association. Sprimgfield, Byrd Prepress, 20o ed.1998. 1193 p.

Boyd, C. E. 1992. Shrimp pond bottom soil and sediment management. In: Wyban, J. (ed), World aquaculture society `92. Proceedings of the special session on shrimp farming. Baton Rouge: World aquaculture society, 1992. p. 166-181.

Browdy, C.L.; Hopkins, J.S. (ed). 1995. Swimming through troubled water. Proceeding of the special session on shrimp farming. San Diego; The world Aquaculture Society. 253 p

Gomes, I.; Lacerda, E.; Leite, A. and Olivera, A. 2003. Effluent treatment of Litopenaeus vannamei (Boone, 1831) in laboratopry, using three stages, sedimentation, oyster filtration and macroalgae absortion. In: Book of Abstract, V. 2, World Aquaculture Meeting, May 19-23, 2003 Salvador,Brasil.

Hopkins, J. S. 1995. A review of water management regimes, which abate the environmental impacts of shrimp farming. In: Browdy, C. L. e J. S. Hopkins (eds). Proceedings of the special session on shrimp farming. Aquaculture ‘95. World aquaculture society, p.157-166

Jara-Jara, R.; Pazos, A.; Abad, M.; GarciaMartin,L. and Sanchez, J. 1997. Growth
of clam seed (Ruditapes decussatus) reared in the wasterwater effluent from a fish in Galicia (N.W.Spain). Aquaculture, vol. 158 (3/4). P. 247-262.

Jones, A; W.C. Dennison, N. and P. Preston.2001. Integrated treatment of shrimp effluent by sedimentation, oyster filtration and macroalgal absorption: a laboratory scale study. Aquaculture 193 : 155í 178.

Jones, A; Preston, P. and W.C. Dennison,2002. The efficiency and condition of oyster and macroalgae used as biological filters of shrimp pond effluent. Aquaculture Research, 33, 1-19.

Lefebvre, S.; Barillé, L. and Claire, M. 2000. Pacific oyster (Crassostrea gigas) feeding responses to a fish-farm effluent. Aquaculture, vol. 1-2. p.185-198.

Marinho-Soriano, E.; Morales, C. and Moreira,W.S.C. 2002. Cultivation of Gracilaria
(Rhodophyta) in shrimp pond effluents in Brazil. Aquaculture Research, 33: 1081-1086.

Nascimento, I.; Mangabeira, F.; Evangelista,A.; Santos, A.; Pereira, S.; Silvany, A. e
Carvalhal, G. 1998. Cultivo integrado de camarões e ostras: a busca de uma tecnologia limpa para o desenvolvimento sustentado. In: Anais de Aqüicultura Brasil’98 - Desenvolvimento com sustentabilidade. Recife-Pe - ABRAQ, v.2 , p.

Nelson, S.; Glenn, E.; Conn, J.; Moore, D.;Walsh, T. and Akutagawa, M. 2001.
Cultivation of Gracilaria parvispora (Rhodophyta) in shrimp-farm effluent ditches and floating cages in Hawaii: a two-phase polyculture system.Aquaculture, vol. 193 (3/4), p. 239-248.

Neori, A.; Ragg, N. and Shpigel, M. 1998. The integrated culture of seaweed, abalone, fish and clams in modular intensive land-based systems: II. Performance and nitrogen portioning within an abalone (Haliotis tuberculata) and macroalgae
culture system. Aquacultural Engineering 17,215-239.

Nunes, A. 2002. Tratamento de efluentes e recirculação de água na engorda de camarão marinho. Panorama de Aqüicultura 71, 27-39.

Nush, E. A. 1980. Comparation of different methods for chlorophyll and phaeopigment determination.Arch. Hydrobiol.Beith. Sttugart, 14: 14-36.

Olivera, A.; Guimarães, E.; Alves, G. and Guimarães, I. 2003. Shrimp farming effluent
treatment using the "Native Oyster” Crassostrea rhizophorae (Guilding, 1828) in Rio Formoso community-PE, Brasil. In: Book of Abstract, V.2, World Aquaculture Meeting, May 19-23, 2003 Salvador, Brasil.

Paez-Osuna, F.; Guerrero-Galvan, S.; RuizFernandez, A. and Espinoza-Angulo,
R. 1997. Fluxes and mass balances of nutrients in a semi-intensive shrimp farm in north-western, México. Mar. Pollut. Bull., 34, 290-297.

Páez-Osuna, F. 2001. The environmental impact of shrimp aquaculture: a global perspective.Environmental Pollution, Amherst, v. 112, p.229-231.

Pagand, P.; Blancheton, J. Lemoalle, J.and Casellas. C. 2000. Low density fish farm
including unit containing Ulva lactuca or Gracilaria verrucosa. Aquaculture Research, vol. 31, No 1, p 729.

Preston, N.; Christopher, J. and Buford, M.2003. Recent advances towards minimizing and managing waste nutrients from intensive shrimp farms in Australia. In: Book of Abstract, V. 2, World Aquaculture Meeting, May 19-23, 2003 Salvador,Brasil.

Pruder, G. Marine Shrimp pond effluent:Caracterization and environmental impact. In: Wyban, J. (ed), World aquaculture society `92. Proceedings of the special session on shrimp farming. Baton Rouge: World aquaculture society,1992. p. 187-1190.

Rocha, P. I. 2005. Um análise da produção, demanda e preços do camarão no mercado internacional. Revista da Associação Brasileira de Criadores de Camarão (ABCC). Nº 2, Junho 2005. p 24-35..

Rodrigues, J. 2005. Carcinicultura Marinha Desempenho em 2004. Revista da Associação Brasileira de Criadores de Camarão (ABCC). Nº2, Junho 2005. p 38-44.

Sandifer, P. & Hopkins, J. 1996. Conceptual design of a sustainable pond-based shrimp culture system.Aquacultural Engineering 15, 41-52.

Samocha, M.; Lopez, M.; Jones E.; Jackson,S. and Lawrence, A. 2004. Characterization
of intake and effluent waters from intensive and semi-intensive shrimp farms in Texas. Aquaculture Research 35, 321-339.

Souza, T. 2003. Tratamento de efluentes de carcinicultura por dois wetlands artificiais pilotos, com e sem Spartina alterniflora. Perspectivas de aplicação. Dissertação (Mestrado em Aqüicultura),Departamento de Aqüicultura, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina,Florianópolis, SC, Brasil.

Shpigel, M. & Neori, A. 1996. The integrated culture of seaweed, Abalone, fish and clams in modular intensive land-based systems: I. Proportions of size and projected revenues. Aquacultural Engineering 15, 313- 326.

Shpigel, M; Gasith, A. and E. Kimmel. 1997.A biomechanical filter for treating fish-pond effluents. Aquaculture, 152: 103-117.

Teichert-Coddington, D.R.; D.B. Rouse; POTTS,A. and C.E, Boyd. 1999. Treatment of harvest discharge form intensive shrimp pond by settling. Aquacultural Engineering, 19 : 147-161.

Tilley, D.; Badrinarayanan, H.; Rosati,R. and Son, J. 2002. Constructed wetlands
as recirculation filters in large-scale shrimp aquaculture. Aquacultural Engineering Vol. 26,No 2, p.81-109.

Vidotti, E.C. & Rollemberg, M. 2004. Algas: da economia nos ambientes aquáticos í­Â  bioremediação e í­Â  quí­­mica analí­­tica. Quim. Nova, Vol, 27, No 1,139-145.

Vinatea, L. 1999. Aqüicultura e desenvolvimento sustentável. Florianópolis : Editora da UFSC.Wong, B. e Piedrahita, R. 2000. Settling velocity characterization of aquacultural solids.Aquacultural Engineering 21, 233-246.

Xie B.; Zhuhong, D. and Xiaorong, W. 2004.Impact of the intensive shrimp farming on the water quality of the adjancent coastal creek from Easter China. Mar. Pollut. Bull. 48: 543-553.