Fungi influence in the chemical composition, textural quality, buoyancy, and floatation time of poorly stored fish feeds

Authors

  • Juliana Sousa Terada Nascimento Universidade Federal de Rondônia – Programa de Pós-Graduação em Ciências Ambientais – Centro de Diagnóstico Animal – Rolim de Moura (RO), Brazil. https://orcid.org/0000-0002-5387-1569
  • Jerônimo Vieira Dantas Filho Universidade Federal de Rondônia – Programa de Pós-Graduação em Ciências Ambientais – Centro de Diagnóstico Animal – Rolim de Moura (RO), Brazil |Universidade Federal de Alagoas – Campus de Engenharias e Ciências Agrárias – Laboratório de Aquicultura e Ecologia Aquática – Rio Largo (AL), Brazil. https://orcid.org/0000-0002-5965-9438
  • Bruna Lucieny Temponi Santos Universidade Federal de Rondônia – Programa de Pós-Graduação em Ciências Ambientais – Centro de Diagnóstico Animal – Rolim de Moura (RO), Brazil. https://orcid.org/0000-0001-8783-4523
  • Ana Carolina Anchieta Adriano Universidade Federal de Rondônia – Programa de Pós-Graduação em Ciências Ambientais – Centro de Diagnóstico Animal – Rolim de Moura (RO), Brazil. https://orcid.org/0009-0009-5999-4605
  • Jorge Luís Vidal Cama Universidade Federal de Rondônia – Programa de Pós-Graduação em Ciências Ambientais – Centro de Diagnóstico Animal – Rolim de Moura (RO), Brazil. https://orcid.org/0000-0003-2232-4906
  • Jucilene Cavali Universidade Federal de Rondônia – Programa de Pós-Graduação em Ciências Ambientais – Centro de Diagnóstico Animal – Rolim de Moura (RO), Brazil. https://orcid.org/0000-0002-2069-4543
  • Emerson Carlos Soares Centro Universitário São Lucas Ji-Paraná Afya – Grupo de Estudo e Pesquisa em Biomonitoramento Ambiental – Ji-Paraná (RO), Brazil. https://orcid.org/0000-0001-5337-5736
  • Sandro de Vargas Schons Universidade Federal de Rondônia – Programa de Pós-Graduação em Ciências Ambientais – Centro de Diagnóstico Animal – Rolim de Moura (RO), Brazil. https://orcid.org/0000-0001-9811-5356

DOI:

https://doi.org/10.20950/1678-2305/bip.2024.50.e862

Keywords:

Colossoma macropomum; Fish farming; Feed storage; Fungal contamination.

Abstract

This study assessed the effects of fungal contamination on the chemical composition, texture, buoyancy, and floating time of poorly stored fish feed. Among 21 commercial and six artisanal feed samples analyzed, 81% showed fungal growth. Nutritional losses were significant: commercial feeds lost 41.97–50.61% of minerals, 17.11–21.69% of crude protein, 38.28% of lipids, 35.16–50.66% of carbohydrates, and 37.77% of raw energy. Artisanal feeds experienced even greater losses, with reductions of 66.12–84.06% in minerals, 43.29–47% in crude protein, and 25.60–42.40% in raw energy. Contamination altered pellet texture, causing hardening, crumbling, and increased fracturability in water, reducing buoyancy (~50%) and causing nutrient leaching. This led to feed accumulation at pond bottoms, accelerating eutrophication. These findings emphasize the economic and environmental risks of fungal contamination in fish farming. Proper storage with humidity and temperature control is crucial to prevent fungal growth, nutrient loss, and mycotoxin contamination.

References

Abubakar, M. Y., Momoh, A. T., & Ipinjolu J. K. (2016). Effect of pelletizing machines on floatation and water stability of farm-made fish feeds. International Journal of Fisheries and Aquatic Studies, 4(3), 98-103. Retrieved from https://www.fisheriesjournal.com/archives/2016/vol4issue3/PartB/4-1-61.pdf

Adekunle, H. L., Sadiku, S. O. E., & Orire, A. M. (2012). Development of farm made floating feed for aquaculture species. International Journal of Advanced Biological Research, 2(4), 579-583.

Adeparusi, E. O., & Famurewa, J. A. V. (2011). Water temperature and surface coating effect on floatability, water absorption and thickness swelling of feed. Journal of Agricultural Science, 3(4), 254. https://doi.org/10.5539/jas.v3n4p254

Ashtiani, S. M., Golzarian, M. R., Motie, J. B., Emadi, B., Jamal, N. N., & Mohammadinezhad, H. (2016). Effect of loading position and storage duration on the textural properties of eggplant. International Journal of Food Properties, 19, 814-825. https://doi.org/10.1080/10942912.2015.1045515

Batatinha, M. J. M., Botura, M. B., & Górniak, S. L. (2020). Micotoxinas e micotoxicoses. In H. S. Spinosa, S. L. Górniak & J. Palermo-Neto (Eds.), Toxicologia aplicada à medicina veterinária (pp. 304-330). Manole.

Bedoya-Serna, C. M., Michelin, E. C., Massocco, M. M., Carrion, L. C., Godoy, S. H., Lima, C. G., Ceccarelli, P. S., Yasui, G. S., Rottinghaus, G. E., Sousa, R. L. M., & Fernandes, A. M. (2018). Effects of dietary aflatoxin B1 on accumulation and performance in matrinxã fish (Brycon cephalus). PLoS One, 13(8), e0201812. https://doi.org/10.1371/journal.pone.0201812

Bezerra Neto, E. B., Amaral, R. V. A., Borges, E. L., Checchia, T. E., Faria Júnior, C. H., Zacardi, D. M., Campos, C. P., & Sousa, R. G. C. (2023). Support capacity of a floodplain lake for intensive fish production (Rondônia, Brazil). Ambiente & Água, 18, e28772023. https://doi.org/10.4136/ambi-agua.2877

Boscolo, W. R., Signor, A., Freitas, J. M. A., Bittencourt, F., & Feiden, A. (2011). Nutrição de peixes nativos. Revista Brasileira de Zootecnia, 40(Spe. Suppl.), 145-154. Retrieved from https://www.sbz.org.br/revista/artigos/66269.pdf

Campeche, D. F. B., Melo, J. F. B., Balzana, L., Souza, R. C., & Figueiredo, R. A. C. R. (2014). Farelo de licuri em dietas para alevinos de tambaqui (Colossoma Macropomum, Cuvier, 1818). Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 66(2), 539-545. https://doi.org/10.1590/1678-41625920

Cavali, J. B., Baldi, S. C. V., Rocha, A. S. C. M., Silva, E. E. da, Nunes, C. T., Soares, E. C. Schons, S. V., Zanella, R., Pontuschka, R. B., & Dantas Filho, J. V. (2024). Preslaughter stunning methods influence the meat quality of Arapaima gigas fillets. Animals, 14(8), 1155. https://doi.org/10.3390/ani14081155

Cavali, J. B., & Lopes, Y. V. A. (2017). Piscicultura e meio ambiente: estudos e perspectivas na Amazônia. EDUFRO.

Coutinho, J. J. O., Neira, L. M., Sandre, L. C. G., Costa, K. I., Martins, M. I. E. G., Portella, M. C., & Carneiro, D. J (2018). Carbohydrate-to-lipid ratio in extruded diets for Nile tilapia farmed in net cages. Aquaculture, 497, 520-525. https://doi.org/10.1016/j.aquaculture.2018.08.014

Draganovic, V., Van Der Goot, A. J., Boom, R., & Jonkers, J. (2011). Assessment of the effects of fish meal, wheat gluten, soy protein concentrate and feed moisture on extruder system parameters and the technical quality of fish feed. Animal Feed Science and Technology, 165(3-4), 238-250. https://doi.org/10.1016/j.anifeedsci.2011.03.004

European Commission (2006). Law No, 401/2006 of 23 February 2006 laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs (Text with EEA relevance). Retrieved from https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A32006R0401

Fitri, N., Chan, S. X. Y., Lah, N. H. C., Jam, F. A., Misnan, N. M., Kamal, N., Sarian, M. N., Lazaldin, M. A. M., Low, C. F., Hamezah, H. S., Rohani, E. R., Mediani, A., & Abas, F. (2022). Comprehensive review on the processing of dried fish and the associated chemical and nutritional changes. Foods, 11(19), 2938. https://doi.org/10.3390/foods11192938

Food and Agriculture Organization of the United Nations (FAO) (1987). Aquaculture Developing and Control Program. FAO.

Guimarães, I. G., & Martins, G. P. (2015). Nutritional requirement of two Amazonian aquacultured fish species, Colossoma macropomum (Cuvier, 1816) and Piaractus brachypomus (Cuvier, 1818): a mini review. Journal of Applied Ichthyology, 31, 57-66. https://doi.org/10.1111/jai.12976

Hwang, J., Kim, D. K., Bae, J. H., Kang, H., Seo, K. M., Kim, B. K., & Lee, S. Y. (2012). The effect of rheological properties of foods on bolus characteristics after mastication. Annals of Rehabilitation Medicine, 36(6), 776-784. http://doi.org/10.5535/arm.2012.36.6.776

Irungu, F. G., Mutungi, C., Faraj, A., Affognon, H., Ekesi, S., Nakimbugwe, D., & Fiaboe, K. K. M. (2019). Optimization of extruder cooking conditions for the manufacture of fish feeds using response surface methodology. Journal of Food Process Engineering, 42(2), e12980. https://doi.org/10.1111/jfpe.12980

ISO (2003). Microbiology of food and animal feeding stuffs. Preparation of test samples, initial suspension and decimal dilutions for microbiological examination. Part 4: specific rules for the preparation of products other than milk and milk products, meat and meat products, and fish and fishery products. ISO.

Johny, A., Faeste, C. K., Bogevik, A. S., Berge, G. M., Fernandes, J. M. O., & Ivanova, L. (2019). Development and validation of a liquid chromatography high-resolution mass spectrometry method for the simultaneous determination of mycotoxins and phytoestrogens in plant-based fish feed and exposed fish. Toxins, 11(4), e222. https://doi.org/10.3390/toxins11040222

Karim, A., Naila, B., khwaja, S., Hussain, S. I., & Ghafar, M. (2024). Evaluation of different Starch Binders on physical quality of fish feed pellets. Brazilian Journal of Biology, 84, e256242. https://doi.org/10.1590/1519-6984.256242

Lall, S. P. (1988). The minerals. In J. E. Halver (Ed.), Fish Nutrition (2. ed., pp. 220-252). Academic Press.

Lynch, J. M., & Barbano, D. M. (1999). Kjeldahl nitrogen analysis as a reference method for protein determination in dairy products. Journal of AOAC International, 82(6), 1389-1398. https://doi.org/10.1093/jaoac/82.6.1389

Macedo, C. F., & Sipaúba-Tavares, L. H. (2010). Eutrophication and water quality in fish farming: consequences and recommendations. Boletim do Instituto de Pesca, 36(2), 149-163. Retrieved from https://institutodepesca.org/index.php/bip/article/view/911

Martins, L. P., Franco, V., Dantas Filho, J. V., & Freitas, C. O. (2020). Viabilidade econômica para o cultivo do tambaqui (Colossoma macropomum) em viveiro escavado no município de Urupá, Rondônia, Brasil. Revista de Administração e Negócios da Amazônia, 12(2), 64-89. https://doi.org/10.18361/2176-8366/rara.v12n2p64-89

Momoh, A. T., Abubakar, M. Y., & Ipinjolu, J. K. (2016). Effect of ingredients substitution on binding, water stability, and floatation of farm-made fish feed. International Journal of Fisheries and Aquatic Studies, 4(3), 92-97. Retrieved from https://www.fisheriesjournal.com/archives/2016/vol4issue3/PartB/4-1-60.pdf

Moura, R. S. T., Lopes, Y. V. A., & Henry-Silva, G. (2014). Sedimentation of nutrients and particulate matter in a reservoir supporting aquaculture activities in the Semiarid region of Rio Grande do Norte. Química Nova, 37(8), 1283-1288. https://doi.org/10.5935/0100-4042.20140203

Oduntan, O. B., Bamgboye A. I., & Oadimeji, O. J. (2022). Influence of pelletizing conditions on fabricated system performance, physical and mechanical properties of a cassava flour based fish feed. Jurnal Kejuruteraan, 34(3), 505-516. https://doi.org/10.17576/jkukm-2022-34(3)-17

Oliveira, M., & Vasconcelos, V. (2020). Occurrence of mycotoxins in fish feed and its effects: a review. Toxins, 12(3), 160. https://doi.org/10.3390/toxins12030160

Ono, E. Y. S., Sugiura, Y., Homechin, M., Kamogae, M., Ueno, Y., & Hirooka, E. Y. (1999). Effect of climatic condition on natural mycoflora and fumonisin in freshly harvested corn of the State of Paraná, Brazil. Mycopathologia, 147(3), 139-148. https://doi.org/10.1023/a:1007171701245

Pereira Junior, G. P., Pereira, E. M. O., Pereira Filho, M. P., Barbosa, P. S., Shimoda, E., & Brandão, L. V (2013). Performance of juvenile tambaqui (Colossoma macropomum Cuvier, 1818) fed diets containing crueira manioc flour (Manihot esculenta, Crantz) in replacement of corn (Zea mays). Acta Amazonica, 43(2), 217-226. https://doi.org/10.1590/S0044-59672013000200013

Pietsch, C., Müller, G., Mourabit, S., Carnal, S., & Bandara, K. (2020). Occurrence of Fungi and Fungal Toxins in Fish Feed During Storage. Toxins, 12(3), 171. https://doi.org/10.3390/toxins12030171

Pinheiro, M. M. de L., Temponi-Santos, B. L., Dantas Filho, J. V., Pedroti, V. P., Cavali, J., Santos, R. B., Nishiyama, A. C. O. C., Guedes, E. A. C., & Schons, S. de V. (2023). First monitoring of cyanobacteria and cyanotoxins in freshwater from fish farms in Rondônia state, Brazil. Heliyon, 9(8), e18518. https://doi.org/10.1016/j.heliyon.2023.e18518

Pinto, F. C. J., Lima, D. B. de, Agustini, B. C., Dallagassa, C. B., Shimabukuro, M. F. Chimelli, M., Brand, D., Fadel-Picheth, C. M. T., & Bonfim, T. M. B. (2012). Morphological and Molecular Identification of Filamentous Fungi Isolated from Cosmetic Powders. Brazilian Archives of Biology and Technology, 55(6), 897-901. https://doi.org/10.1590/S1516-89132012000600013

Pires, B. S., Pretto, A., Stefanello, C. M., Carvalho, P. T., & Pedron, F. A. (2021). Influence of different sources and fiber levels in the diet of juvenile pacu (Piaractus mesopotamicus) on the growth performance, somatic parameters, and proximate composition. Revista de Ciências Agroveterinárias, 20(4), 294-301. https://doi.org/10.5965/223811712042021294

Santos, L. D., Furuya, W. M., Silva, T. S. S. C., Michelato, M., & Matsushita, M. (2009). Conjugated linoleic acid in pacu diets: deposition time, performance and fatty acids profile. Revista Brasileira de Zootecnia, 38(6), 980-988. https://doi.org/10.1590/S1516-35982009000600002

Souci, S. W., Fachman, H., & Kraut, E. (2000). Foods composition and nutrition tables (6. ed.). Medpharm.

Terada-Nascimento, J. S., Dantas-Filho, J. V., Temponi-Santos, B. L., Perez-Pedroti, V., Pinheiro, M. M. de L., García-Nuñez,R. Y., Muniz, I. M., Mira, A. B., Guedes, E. A. C., & Schons, S. de V. (2023). Monitoring of mycotoxigenic fungi in fish farm water and fumonisins in feeds for farmed Colossoma macropomum. Toxics, 11(9), 762. https://doi.org/10.3390/toxics11090762

Tolosa, J., Barba, F. J., Font, G., & Ferrer, E. (2019). Mycotoxin incidence in some fish products: QuEChERS methodology and liquid chromatography linear ion trap tandem mass spectrometry approach. Molecules, 24(3), 527. https://doi.org/10.3390/molecules24030527

Vidal Júnior, M. V. V., Donzele, J. L., Camargo, A. C. da S., Andrade, D. R. de A., & Santos, L. C. (1998). Níveis de proteína bruta para tambaqui (Colossoma macropomun), na fase de 30 a 250 gramas. 1. Desempenho dos tambaquis. Revista Brasileira de Zootecnia, 27(3), 421-426. Retrieved from https://www.sbz.org.br/revista/artigos/1972.pdf

Downloads

Published

2024-12-17

Issue

Section

Scientific Article

Most read articles by the same author(s)