Sustainability of pacific white shrimp culture strategies during a regional outbreak of white spot syndrome virus

Authors

DOI:

https://doi.org/10.20950/1678-2305/bip.2024.50.e873

Keywords:

Indicators of sustainability, Ponds, Shrimp aquaculture

Abstract

The present study evaluated economic, environmental and social sustainability of three production strategies of Pacific white shrimp (Litopenaeus vannamei) during a regional outbreak of white spot syndrome virus. The strategies mainly differed by stocking densities (92, 14, 8 larvae.m-2; D92, D14, and D8, respectively), fertilizer inputs, and other general management. Each dimension of sustainability was evaluated using sets of indicators. The D14 and D8 strategies showed greater economic feasibility than D92 because of the reduced operational costs and investments to buy post-larvae and feed. All strategies showed moderate environmental sustainability but had weakened economic and social sustainability due to the virus. The D14 and D8 strategies received the highest overall sustainability index. The D92 was the most environmentally favorable management strategy and had a social tendency. In general, shrimp mariculture performed with a high initial stocking density cannot guarantee the return of invested capital. The lower density strategies were economically feasible due to the high prices paid per kilogram of shrimp as a function of the higher individual average weight. However, economic feasibility of these two strategies coincided with low creation of employment opportunities and income, decreased social sustainability, and increased environmental impact.

References

Avnimelech, Y. (2009). Biofloc technology. A practical guide book. Baton Rouge: World Aquaculture Society, 2009.

Boyd, C.E. (1999). Codes of practice for responsible shrimp farming. St. Louis: Global Aquaculture Aliance.

Boyd, C.E.; Wood, C.W.; Chaney, P.L. & Queiroz, J.F. (2010). Role of aquaculture pond sediments in sequestration of annual global carbon emissions. Environmental Pollution, 158(8): 2537-2540. https://doi.org/10.1016/j.envpol.2010.04.025

Brito, L.O.; Arana, L.A.V.; Soares, R.B.; Severi, W.; Mirandar, H.; Silva, S.M.B.C.; Coimbra, M.R.M. & Galvez, A.O. (2014). Water quality, phytoplankton composition and growth of Litopenaeus vannamei (Boone) in an integrated biofloc system with Gracilaria birdiae (Greville) and Gracilaria domingensis (Kutzing). Aquaculture International, 22: 1649-1664. https://doi.org/10.1007/s10499-014-9771-9

Brito, L.O.; Chagas, A.M.; Silva, E.P.; Soares, R.B.; Severi, W. & Galvez, A.O. (2016). Water quality, Vibrio density and growth of Pacific white shrimp Litopenaeus vannamei (Boone) in an integrated biofloc system with red seaweed Gracilaria birdiae (Greville). Aquaculture Research, 47: 940-950. https://doi.org/10.1111/are.12552

Buffon, A.G.M.; Tauk-Tornisielo, S.M. & Pião, A.C.S. (2009). Tempo de vida útil da represa velha da microbacia do córrego da barrinha, Pirassununga, SP, Brasil. Arquivos do Instituto Biológico, 76(4): 673-679. https://doi.org/10.1590/1808-1657v76p6732009

Castillo-Soriano, F.A.; Ibarra-Junquera, V.; Escalante-Minakata, P.; Mendoza-Cano, O.; Ornelas- Paz, J.J.; Almanzaramírez, J.C. & Meyer-Willerer, A.O. (2013). Nitrogen dynamics model in zero water exchange, low salinity intensive ponds of white shrimp, Litopenaeus vannamei, at Colima, México. Latin American Journal Aquatic Research, 41(1): 68-79. https://doi.org/10.3856/vol41-issue1-fulltext-5

Centro de Investigaciones Biológicas del Nordeste. 2008. Resumen ejecutivo del informe final del proyecto programa integral de sanidad acuícola en camarón. La Paz: CIBNOR.

Chopin, T.M.; Troell, G.K.; Reid, D.; Knowler, S.M.C.; Robinson, A.; Neori, A.H.; Buschmann, S.J.; Pang & Fang, J. (2010). Integrated multi-trophic aquaculture (IMTA)—A responsible practice providing diversified seafood products while rendering biomitigating services through its extractive components. In: Franz, N.; Schmidt, C.C. (Eds.). Proceedings of the Organisation for economic co-operation and development (OECD) workshop “Advancing the Aquaculture Agenda: Policies to Ensure a Sustainable Aquaculture Sector”, 2010. Paris: Organization for Economic Co-operation and Development. p. 195-217.

Chowdhury, A.; Kahirun, Y. & Shivaoti, G.P. (2015). Indicatorbased sustainability assessment of shrimp farming: a case for extensive culture methods in South-western coastal Bangladesh. Ecological Indicators, 18(4): 261-281. https://doi.org/10.1504/IJSD.2015.072646

Costa, S.W.; Vicente, L.R.M.; Souza, T.M.; Andreatta, E.R. & Marques, M.R.F. (2010). Parâmetros de cultivo e a enfermidade da mancha‑branca em fazendas de camarões de Santa Catarina. Pesquisa Agropecuária Brasileira, 45(12): 1521-1530.

Fegan, D.F. & Clifford III, H.C. (2001). Health management for viral diseases in shrimp farms. In: Special session on sustainable shrimp culture, aquaculture. Baton Rouge: The World Aquaculture Society. p. 168‑198.

Flaherty, M.; Szuster, B. & Miller, P. (2000). Low salinity inland shrimp farming in Thailand. Ambio, 29(3): 174-179. https://doi.org/10.1579/0044-7447-29.3.174

Food and Agriculture Organization (FAO). (2020). The State of World Fisheries and aquaculture (SOFIA). Rome: Fisheries and Aquaculture Department.

Fourooghifard, H.; Matinfar, A.; Mortazavi, M.S.; Roohani, G.K. & Mirbakhsh, M. (2018). Nitrogen and phosphorous budgets for integrated culture of Litopenaeus vannamei with red seaweed Gracilaria corticata in zero water exchange system. Iranian Journal of Fisheries Sciences, 17(3): 471-486. https://doi.org/10.22092/IJFS.2018.116382

Giupponi, C. (2007). Decision Support Systems for Implementing the European Water Framework Directive: the MULINO approach. Environmental Modeling and Software, 22(2): 248-258. https://doi.org/10.1016/j.envsoft.2005.07.024

Golterman, H.L.; Climo, R.S. & Ohnstad, M.A.M. (1978). Methods for physical and chemical analysis of fresh waters. 2.ed. Oxford: IBP. Gómez-Baggethun, E.; Groot, R.; Lomas, P.L. & Montes, C. (2010). The history of ecosystem services in economic theory and practice: From early notions to markets and payment schemes. Ecological Economics, 69: 1209-1218.

Guertler, C.; Rieg, T.; Mejia‑Ruiz, C.H.; Lehmann, M.; Barracco, M.A. & Perazzolo, L.M. (2013). Hemograma e sobrevivência de camarões marinhos após silenciamento do WSSV por RNA de interferência. Pesquisa Agropecuária Brasileira, 48(8): 983-990.

Hall, D. (2004). Explaining the diversity of Southeast Asian shrimp aquaculture. Journal of Agrarian Change, 4(3): 315-335. https://doi.org/10.1111/j.1471-0366.2004.00081.x

Halle, M.; Bizikova, L.; Wolfe, R.; Crawford, A.; Casier, L.; Sharma, S. & Potts, J. (2017). Sustainable development goals: IISD perspectives on the 2030 – Agenda for sustainable development. IISD. Available at: http://www.iisd.org/library/iisd-perspectives-2030-agendasustainable-development. Accessed on: Mar. 19, 2017.

Koroleff, F. (1976). Determination of nutrients. In: Grasshoff, K. (Ed.). Methods of Seawater Analysis. New York: Verlag Chemie Weinhein. p. 117-181.

Krishna, P.V.; Prakash, B.K.; Kumar, V.H. & Prabhavathi, K. (2015). Growth, survival and production of pacific white shrimp Litopenaeus vannamei at different stocking densities under semi intensive culture systems in andhra pradesh. International Journal of Advanced Research, 3: 446-452.

Lazado, C.C. & Caipang, C.M.A. (2014). Atlantic cod in the dynamic probiotics research in aquaculture. Aquaculture, 424-425: 53-62. https://doi.org/10.1016/j.aquaculture.2013.12.040

Mackereth, F.J.H.; Heron, J. & Talling, J.F. (1978). Water analysis: some revised methods for linologists. London: Freshwater Biological Association.

Maia, E.P.; Modesto, G.A.; Brito, L.O. & Galvez, A.O. (2016). Intensive culture system of Litopenaeus vannamei in commercial ponds with zero water exchange and addition of molasses and probiotics. Revista de Biologia Marina y Oceanografia, 51(1): 61-67. https://doi.org/10.4067/S0718-19572016000100006

Moreno-Figueroa, L.D.; Naranjo-Páramo, J.; Alfredo Hernández-Llamas, A.; Vargas-Mendieta, M.; Hernández-Gurrola, J.A. & Villarreal-Colmenares, H. (2017). Performance of a photo-heterotrophic, hypersaline system for intensive cultivation of white leg shrimp (Litopenaeus vannamei) with minimal water replacement in lined ponds using a stochastic approach. Aquaculture Research, 49: 57-67. https://doi.org/10.1111/are.13432

Moura, R.S.T.; Valenti, W.C. & Henry-Silva, G.G. (2016). Sustainability of Nile tilapia net-cage culture in a reservoir in a semi-arid region. Ecological Indicators, 66: 574-582. https://doi.org/10.1016/j.ecolind.2016.01.052

Nobre, A.M.; Robertson-Andersson, D.; Neori, A. & Sankar, K. (2010). Ecological–economic assessment of aquaculture options: comparison between abalone monoculture and integrated multi-trophic aquaculture of abalone and seaweeds. Aquaculture, 306(1-4): 116-126. https://doi.org/10.1016/j.aquaculture.2010.06.002

Nunan, L.; Lightner, D.; Pantoja, C. & Gómez-Jiménez, S. (2014). Detection of acute hepatopancreatic necrosis disease (AHPND) in Mexico. Diseases of Aquatic Organisms, 111(1): 81-86. https://doi.org/10.3354/dao02776

O’Ryan, R. & Pereira, M. (2015). Participatory indicators of sustainability for the salmon industry: the case of Chile. Marine Policy, 51: 322-330. https://doi.org/10.1016/j.marpol.2014.09.010

Paul, B.G. & Vogl, C.R. (2011). Impacts of shrimp farming in Bangladesh: Challenges and alternatives. Ocean & Coastal Management, 54(3): 201-211. https://doi.org/10.1016/j.ocecoaman.2010.12.001

Pereira, S.A.; Kimpara, J.M. & Valenti, W.C. (2020). Sustainability of the seaweed Hypnea pseudomusciformis farming in the tropical Southwestern Atlantic. Ecological Indicators, 121: 107101. https://doi.org/10.1016/j.ecolind.2020.107101

Pimentel, O.A.L.F.; Oliveira, V.Q.; Oliveira, C.R.R.; Severi, W.; Gálvez, A.O.; Amado, A.M. & Brito, L.O. (2021). Assessment of different ionic adjustment strategies in lowsalinity water on the growth of Litopenaeus vannamei and microbial community stoichiometry in a synbiotic nursery system. Aquaculture Research, 53: 50-62. https://doi.org/10.1111/are.15552

Ramos-Carreño, S.; Valencia- Yáñez, R.; Correa-Sandoval, F.; Ruíz-García, N.; Díaz-Herrera, F. & Giffard-Mena, I. (2014). White spot syndrome virus (WSSV) infection in shrimp (Litopenaeus vannamei) exposed to low and high salinity. Archives of Virology, 159(9): 2213-2222. https://doi.org/10.1007/s00705-014-2052-0

Rubio-Castro, A.; Luna-González, A.; Álvarez-Ruíz, P.; Escamilla-Montes, R.; Fierro-Coronado, J.A.; López-León, P.; Flores-Miranda, M.C. & Diarte-Plata, G. (2016). Survival and immune-related gene expression in Litopenaeus vannamei co-infected with WSSV and Vibrio parahaemolyticus. Aquaculture, 464: 692-698. https://doi.org/10.1016/j.aquaculture.2016.08.024

Sanches, E.G.; Tosta, G.A.M. & Souza-Filho, J.J. (2013). Viabilidade econômica da produção de formas jovens de bijupirá (Rachycentron canadum). Boletim do Instituto de Pesca, 39: 15-23.

Soares, D.C.E. & Henry-Silva, G.G. (2019). Emission and absorption of greenhouse gases generated from marine shrimp production (Litopeneaus vannamei) in high salinity. Journal of Cleaner Production, 218: 367-376. https://doi.org/10.1016/j.jclepro.2019.02.002

Sonnenholzner, S.; Rodríguez, J. & Calderon, J. (2002). Temperature and WSSV: CENAIM studies promising shrimp culture technique. Global Aquaculture Advocate, 5: 55-57.

Sookying, D. & Davis, D.A. (2011). Pond production of Pacific white shrimp (Litopenaeus vannamei) fed high levels of soybean meal in various combinations. Aquaculture, 319(1-2): 141-149. https://doi.org/10.1016/j.aquaculture.2011.06.049

Srinivas, D.; Venkatrayulu, Ch. & Swapna, B. (2016). Sustainability of exotic shrimp Litopenaeus vannamei (Boone, 1931) farming in coastal Andhra Pradesh, India: Problems and Issues. European Journal of Experimental Biology, 6(3): 80-85.

Tran, L.; Nunan, L.; Redman, R.M.; Mohney, L.L.; Pantoja, C.R.; Fitzsimmons, K. & Lightner, D.V. (2013). Determination of the infectious nature of the agent of acute hepatopancreatic necrosis syndrome affecting penaeid shrimp. Diseases of Aquatic Organisms, 105(1): 45-55. https://doi.org/10.3354/dao02621

Trejo-Flores, J.V.; Luna-González, A.; Álvarez-Ruíz, P.; Escamilla-Montes, R.; Peraza-Gómez, V.; Diarte-Plata, G.; Esparza-Leal, H.M.; Campa-Córdova, A.I.; Gámez-Jiménez, C. & Rubio-Castro, A. (2016). Protective effect of Aloe vera in Litopenaeus vannamei challenged with Vibrio parahaemolyticus and white spot syndrome vírus. Aquaculture, 465: 60-64. https://doi.org/10.1016/j.aquaculture.2016.08.033

Valderrama, D. & Engle, C.R. (2002). Economic optimization of shrimp farming in Honduras. Journal of the World Aquaculture Society, 33(4): 398-404. https://doi.org/10.1111/j.1749-7345.2002.tb00019.x

Valenti, W.C.; Barros, H.P.; Moraes-Valenti, P.; Bueno, G.W. & Cavalli, R.O. (2021). Aquaculture in Brazil: past, present and future. Aquaculture Reports, 19: 100611. https://doi.org/10.1016/j.aqrep.2021.100611

Valenti, W.C.; Kimpara, J.M. & Preto, B.L. (2011). Measuring aquaculture sustainability. World Aquaculture Society Magazine, 42(3): 26-30.

Valenti, W.C.; Kimpara, J.M.; Preto, B.L. & Moraes-Valenti, P. (2018). Indicators of sustainability to assess aquaculture systems. Ecological Indicators, 88: 402-413. https://doi.org/10.1016/j.ecolind.2017.12.068

Vine, N.G.; Leukes, W.D. & Kaiser, H. (2006). Probiotics in marine larviculture. FEMS Microbiology Reviews, 30(3): 404-427. https://doi.org/10.1111/j.1574-6976.2006.00017.x

Yang, P.; He, Q.; Huang, J. & Tong, C. (2015). Fluxes of greenhouse gases at two different aquaculture ponds in the coastal zone of southeastern China. Atmospheric Environment, 115: 269-277. https://doi.org/10.1016/j.atmosenv.2015.05.067

Downloads

Published

2024-09-25

Issue

Section

Scientific Article

Most read articles by the same author(s)