Estratégias de sustentabilidade no cultivo do camarão-branco-do-pacífico durante um surto regional do vírus da síndrome da mancha branca

Autores

DOI:

https://doi.org/10.20950/1678-2305/bip.2024.50.e873

Palavras-chave:

Aquicultura de camarão, Indicadores de sustentabilidade, Lagoas

Resumo

O presente estudo avaliou a sustentabilidade econômica, ambiental e social de três estratégias de produção de camarão-branco-do-pacífico (Litopenaeus vannamei) durante um surto regional do vírus da síndrome da mancha branca. As estratégias diferiram principalmente pelas densidades de estocagem (92, 14, 8 larvas·m-2; D92, D14 e D8, respectivamente), insumos de fertilizantes e outros manejos gerais. Cada dimensão da sustentabilidade foi avaliada por meio de conjuntos de indicadores. As estratégias D14 e D8 apresentaram maior viabilidade econômica do que a D92 por causa da redução dos custos operacionais e investimentos para compra de pós-larvas e ração. Todas as estratégias mostraram sustentabilidade ambiental moderada, mas enfraqueceram a sustentabilidade econômica e social em razão do vírus. As estratégias D14 (60) e D8 (62) receberam o maior índice geral de sustentabilidade. O D92 foi a estratégia de manejo e tendência social mais favorável ao meio ambiente. Em geral, a maricultura de camarão com alta densidade de estocagem inicial não pode garantir o retorno do capital investido. As estratégias de menor densidade foram economicamente viáveis pelos altos preços pagos por quilo de camarão por causa do maior peso médio individual e redução da taxa de conversão alimentar aparente (D14 = 1,44 e D8 = 0,22), no entanto a viabilidade econômica dessas duas estratégias coincidiu com a baixa criação de oportunidades de emprego e renda, a diminuição da sustentabilidade social e o aumento do impacto ambiental.

Referências

Avnimelech, Y. (2009). Biofloc technology. A practical guide book. Baton Rouge: World Aquaculture Society, 2009.

Boyd, C.E. (1999). Codes of practice for responsible shrimp farming. St. Louis: Global Aquaculture Aliance.

Boyd, C.E.; Wood, C.W.; Chaney, P.L. & Queiroz, J.F. (2010). Role of aquaculture pond sediments in sequestration of annual global carbon emissions. Environmental Pollution, 158(8): 2537-2540. https://doi.org/10.1016/j.envpol.2010.04.025

Brito, L.O.; Arana, L.A.V.; Soares, R.B.; Severi, W.; Mirandar, H.; Silva, S.M.B.C.; Coimbra, M.R.M. & Galvez, A.O. (2014). Water quality, phytoplankton composition and growth of Litopenaeus vannamei (Boone) in an integrated biofloc system with Gracilaria birdiae (Greville) and Gracilaria domingensis (Kutzing). Aquaculture International, 22: 1649-1664. https://doi.org/10.1007/s10499-014-9771-9

Brito, L.O.; Chagas, A.M.; Silva, E.P.; Soares, R.B.; Severi, W. & Galvez, A.O. (2016). Water quality, Vibrio density and growth of Pacific white shrimp Litopenaeus vannamei (Boone) in an integrated biofloc system with red seaweed Gracilaria birdiae (Greville). Aquaculture Research, 47: 940-950. https://doi.org/10.1111/are.12552

Buffon, A.G.M.; Tauk-Tornisielo, S.M. & Pião, A.C.S. (2009). Tempo de vida útil da represa velha da microbacia do córrego da barrinha, Pirassununga, SP, Brasil. Arquivos do Instituto Biológico, 76(4): 673-679. https://doi.org/10.1590/1808-1657v76p6732009

Castillo-Soriano, F.A.; Ibarra-Junquera, V.; Escalante-Minakata, P.; Mendoza-Cano, O.; Ornelas- Paz, J.J.; Almanzaramírez, J.C. & Meyer-Willerer, A.O. (2013). Nitrogen dynamics model in zero water exchange, low salinity intensive ponds of white shrimp, Litopenaeus vannamei, at Colima, México. Latin American Journal Aquatic Research, 41(1): 68-79. https://doi.org/10.3856/vol41-issue1-fulltext-5

Centro de Investigaciones Biológicas del Nordeste. 2008. Resumen ejecutivo del informe final del proyecto programa integral de sanidad acuícola en camarón. La Paz: CIBNOR.

Chopin, T.M.; Troell, G.K.; Reid, D.; Knowler, S.M.C.; Robinson, A.; Neori, A.H.; Buschmann, S.J.; Pang & Fang, J. (2010). Integrated multi-trophic aquaculture (IMTA)—A responsible practice providing diversified seafood products while rendering biomitigating services through its extractive components. In: Franz, N.; Schmidt, C.C. (Eds.). Proceedings of the Organisation for economic co-operation and development (OECD) workshop “Advancing the Aquaculture Agenda: Policies to Ensure a Sustainable Aquaculture Sector”, 2010. Paris: Organization for Economic Co-operation and Development. p. 195-217.

Chowdhury, A.; Kahirun, Y. & Shivaoti, G.P. (2015). Indicatorbased sustainability assessment of shrimp farming: a case for extensive culture methods in South-western coastal Bangladesh. Ecological Indicators, 18(4): 261-281. https://doi.org/10.1504/IJSD.2015.072646

Costa, S.W.; Vicente, L.R.M.; Souza, T.M.; Andreatta, E.R. & Marques, M.R.F. (2010). Parâmetros de cultivo e a enfermidade da mancha‑branca em fazendas de camarões de Santa Catarina. Pesquisa Agropecuária Brasileira, 45(12): 1521-1530.

Fegan, D.F. & Clifford III, H.C. (2001). Health management for viral diseases in shrimp farms. In: Special session on sustainable shrimp culture, aquaculture. Baton Rouge: The World Aquaculture Society. p. 168‑198.

Flaherty, M.; Szuster, B. & Miller, P. (2000). Low salinity inland shrimp farming in Thailand. Ambio, 29(3): 174-179. https://doi.org/10.1579/0044-7447-29.3.174

Food and Agriculture Organization (FAO). (2020). The State of World Fisheries and aquaculture (SOFIA). Rome: Fisheries and Aquaculture Department.

Fourooghifard, H.; Matinfar, A.; Mortazavi, M.S.; Roohani, G.K. & Mirbakhsh, M. (2018). Nitrogen and phosphorous budgets for integrated culture of Litopenaeus vannamei with red seaweed Gracilaria corticata in zero water exchange system. Iranian Journal of Fisheries Sciences, 17(3): 471-486. https://doi.org/10.22092/IJFS.2018.116382

Giupponi, C. (2007). Decision Support Systems for Implementing the European Water Framework Directive: the MULINO approach. Environmental Modeling and Software, 22(2): 248-258. https://doi.org/10.1016/j.envsoft.2005.07.024

Golterman, H.L.; Climo, R.S. & Ohnstad, M.A.M. (1978). Methods for physical and chemical analysis of fresh waters. 2.ed. Oxford: IBP. Gómez-Baggethun, E.; Groot, R.; Lomas, P.L. & Montes, C. (2010). The history of ecosystem services in economic theory and practice: From early notions to markets and payment schemes. Ecological Economics, 69: 1209-1218.

Guertler, C.; Rieg, T.; Mejia‑Ruiz, C.H.; Lehmann, M.; Barracco, M.A. & Perazzolo, L.M. (2013). Hemograma e sobrevivência de camarões marinhos após silenciamento do WSSV por RNA de interferência. Pesquisa Agropecuária Brasileira, 48(8): 983-990.

Hall, D. (2004). Explaining the diversity of Southeast Asian shrimp aquaculture. Journal of Agrarian Change, 4(3): 315-335. https://doi.org/10.1111/j.1471-0366.2004.00081.x

Halle, M.; Bizikova, L.; Wolfe, R.; Crawford, A.; Casier, L.; Sharma, S. & Potts, J. (2017). Sustainable development goals: IISD perspectives on the 2030 – Agenda for sustainable development. IISD. Available at: http://www.iisd.org/library/iisd-perspectives-2030-agendasustainable-development. Accessed on: Mar. 19, 2017.

Koroleff, F. (1976). Determination of nutrients. In: Grasshoff, K. (Ed.). Methods of Seawater Analysis. New York: Verlag Chemie Weinhein. p. 117-181.

Krishna, P.V.; Prakash, B.K.; Kumar, V.H. & Prabhavathi, K. (2015). Growth, survival and production of pacific white shrimp Litopenaeus vannamei at different stocking densities under semi intensive culture systems in andhra pradesh. International Journal of Advanced Research, 3: 446-452.

Lazado, C.C. & Caipang, C.M.A. (2014). Atlantic cod in the dynamic probiotics research in aquaculture. Aquaculture, 424-425: 53-62. https://doi.org/10.1016/j.aquaculture.2013.12.040

Mackereth, F.J.H.; Heron, J. & Talling, J.F. (1978). Water analysis: some revised methods for linologists. London: Freshwater Biological Association.

Maia, E.P.; Modesto, G.A.; Brito, L.O. & Galvez, A.O. (2016). Intensive culture system of Litopenaeus vannamei in commercial ponds with zero water exchange and addition of molasses and probiotics. Revista de Biologia Marina y Oceanografia, 51(1): 61-67. https://doi.org/10.4067/S0718-19572016000100006

Moreno-Figueroa, L.D.; Naranjo-Páramo, J.; Alfredo Hernández-Llamas, A.; Vargas-Mendieta, M.; Hernández-Gurrola, J.A. & Villarreal-Colmenares, H. (2017). Performance of a photo-heterotrophic, hypersaline system for intensive cultivation of white leg shrimp (Litopenaeus vannamei) with minimal water replacement in lined ponds using a stochastic approach. Aquaculture Research, 49: 57-67. https://doi.org/10.1111/are.13432

Moura, R.S.T.; Valenti, W.C. & Henry-Silva, G.G. (2016). Sustainability of Nile tilapia net-cage culture in a reservoir in a semi-arid region. Ecological Indicators, 66: 574-582. https://doi.org/10.1016/j.ecolind.2016.01.052

Nobre, A.M.; Robertson-Andersson, D.; Neori, A. & Sankar, K. (2010). Ecological–economic assessment of aquaculture options: comparison between abalone monoculture and integrated multi-trophic aquaculture of abalone and seaweeds. Aquaculture, 306(1-4): 116-126. https://doi.org/10.1016/j.aquaculture.2010.06.002

Nunan, L.; Lightner, D.; Pantoja, C. & Gómez-Jiménez, S. (2014). Detection of acute hepatopancreatic necrosis disease (AHPND) in Mexico. Diseases of Aquatic Organisms, 111(1): 81-86. https://doi.org/10.3354/dao02776

O’Ryan, R. & Pereira, M. (2015). Participatory indicators of sustainability for the salmon industry: the case of Chile. Marine Policy, 51: 322-330. https://doi.org/10.1016/j.marpol.2014.09.010

Paul, B.G. & Vogl, C.R. (2011). Impacts of shrimp farming in Bangladesh: Challenges and alternatives. Ocean & Coastal Management, 54(3): 201-211. https://doi.org/10.1016/j.ocecoaman.2010.12.001

Pereira, S.A.; Kimpara, J.M. & Valenti, W.C. (2020). Sustainability of the seaweed Hypnea pseudomusciformis farming in the tropical Southwestern Atlantic. Ecological Indicators, 121: 107101. https://doi.org/10.1016/j.ecolind.2020.107101

Pimentel, O.A.L.F.; Oliveira, V.Q.; Oliveira, C.R.R.; Severi, W.; Gálvez, A.O.; Amado, A.M. & Brito, L.O. (2021). Assessment of different ionic adjustment strategies in lowsalinity water on the growth of Litopenaeus vannamei and microbial community stoichiometry in a synbiotic nursery system. Aquaculture Research, 53: 50-62. https://doi.org/10.1111/are.15552

Ramos-Carreño, S.; Valencia- Yáñez, R.; Correa-Sandoval, F.; Ruíz-García, N.; Díaz-Herrera, F. & Giffard-Mena, I. (2014). White spot syndrome virus (WSSV) infection in shrimp (Litopenaeus vannamei) exposed to low and high salinity. Archives of Virology, 159(9): 2213-2222. https://doi.org/10.1007/s00705-014-2052-0

Rubio-Castro, A.; Luna-González, A.; Álvarez-Ruíz, P.; Escamilla-Montes, R.; Fierro-Coronado, J.A.; López-León, P.; Flores-Miranda, M.C. & Diarte-Plata, G. (2016). Survival and immune-related gene expression in Litopenaeus vannamei co-infected with WSSV and Vibrio parahaemolyticus. Aquaculture, 464: 692-698. https://doi.org/10.1016/j.aquaculture.2016.08.024

Sanches, E.G.; Tosta, G.A.M. & Souza-Filho, J.J. (2013). Viabilidade econômica da produção de formas jovens de bijupirá (Rachycentron canadum). Boletim do Instituto de Pesca, 39: 15-23.

Soares, D.C.E. & Henry-Silva, G.G. (2019). Emission and absorption of greenhouse gases generated from marine shrimp production (Litopeneaus vannamei) in high salinity. Journal of Cleaner Production, 218: 367-376. https://doi.org/10.1016/j.jclepro.2019.02.002

Sonnenholzner, S.; Rodríguez, J. & Calderon, J. (2002). Temperature and WSSV: CENAIM studies promising shrimp culture technique. Global Aquaculture Advocate, 5: 55-57.

Sookying, D. & Davis, D.A. (2011). Pond production of Pacific white shrimp (Litopenaeus vannamei) fed high levels of soybean meal in various combinations. Aquaculture, 319(1-2): 141-149. https://doi.org/10.1016/j.aquaculture.2011.06.049

Srinivas, D.; Venkatrayulu, Ch. & Swapna, B. (2016). Sustainability of exotic shrimp Litopenaeus vannamei (Boone, 1931) farming in coastal Andhra Pradesh, India: Problems and Issues. European Journal of Experimental Biology, 6(3): 80-85.

Tran, L.; Nunan, L.; Redman, R.M.; Mohney, L.L.; Pantoja, C.R.; Fitzsimmons, K. & Lightner, D.V. (2013). Determination of the infectious nature of the agent of acute hepatopancreatic necrosis syndrome affecting penaeid shrimp. Diseases of Aquatic Organisms, 105(1): 45-55. https://doi.org/10.3354/dao02621

Trejo-Flores, J.V.; Luna-González, A.; Álvarez-Ruíz, P.; Escamilla-Montes, R.; Peraza-Gómez, V.; Diarte-Plata, G.; Esparza-Leal, H.M.; Campa-Córdova, A.I.; Gámez-Jiménez, C. & Rubio-Castro, A. (2016). Protective effect of Aloe vera in Litopenaeus vannamei challenged with Vibrio parahaemolyticus and white spot syndrome vírus. Aquaculture, 465: 60-64. https://doi.org/10.1016/j.aquaculture.2016.08.033

Valderrama, D. & Engle, C.R. (2002). Economic optimization of shrimp farming in Honduras. Journal of the World Aquaculture Society, 33(4): 398-404. https://doi.org/10.1111/j.1749-7345.2002.tb00019.x

Valenti, W.C.; Barros, H.P.; Moraes-Valenti, P.; Bueno, G.W. & Cavalli, R.O. (2021). Aquaculture in Brazil: past, present and future. Aquaculture Reports, 19: 100611. https://doi.org/10.1016/j.aqrep.2021.100611

Valenti, W.C.; Kimpara, J.M. & Preto, B.L. (2011). Measuring aquaculture sustainability. World Aquaculture Society Magazine, 42(3): 26-30.

Valenti, W.C.; Kimpara, J.M.; Preto, B.L. & Moraes-Valenti, P. (2018). Indicators of sustainability to assess aquaculture systems. Ecological Indicators, 88: 402-413. https://doi.org/10.1016/j.ecolind.2017.12.068

Vine, N.G.; Leukes, W.D. & Kaiser, H. (2006). Probiotics in marine larviculture. FEMS Microbiology Reviews, 30(3): 404-427. https://doi.org/10.1111/j.1574-6976.2006.00017.x

Yang, P.; He, Q.; Huang, J. & Tong, C. (2015). Fluxes of greenhouse gases at two different aquaculture ponds in the coastal zone of southeastern China. Atmospheric Environment, 115: 269-277. https://doi.org/10.1016/j.atmosenv.2015.05.067

Downloads

Publicado

2024-09-25

Edição

Seção

Artigo cientí­fico

Artigos mais lidos pelo mesmo(s) autor(es)