Efeito do pesticida carbofurán em juvenis Oreochromis niloticus sobre a toxicidade, o metabolismo de rotina e parí­¢metros hematológicos

Autores

  • Edison BARBIERI Instituto de Pesca, Agência Paulista de Tecnologia dos Agronegócios -  APTA, Secretaria da Agricultura e Abastecimento, Governo do Estado de São Paulo http://orcid.org/0000-0002-7423-3726
  • Karla Ruiz-HIDALGO Laboratorio de Ecotoxicolog-­­a - Centro de Investigación en Contaminación Ambiental - Universidad de Costa Rica
  • Karina Fernandes Oliveira REZENDE Instituto de Ciências Biomédicas da Universidade de São Paulo (USP) http://orcid.org/0000-0002-7284-4443
  • Antônio Fernando Gervásio LEONARDO Polo Regional de Pariquera-açu -  APTA -  Secretaria da Agricultura e Abastecimento do Estado de São Paulo
  • Francisco Pérez SABINO Escuela de Quí­­mica, Facultad de Ciencias Quí­­micas y Farmacia, Universidad de San Carlos de Guatemala

DOI:

https://doi.org/10.20950/1678-2305.2017v43n4p513

Palavras-chave:

carbofurán, tilapia, Oreochromis niloticus, temperatura, toxicidad

Resumo

El propósito del presente estudio fue estimar la toxicidad del pesticida carbofurán sobre los parámetros hematológicos (hematocrito, hemoglobina, glucosa en la sangre y contenido de eritrócitos y leucocitos totales), sobre la excreción de amoní­­aco y el consumo de oxí­­geno en indiví­­duos juveniles de Oreochromis niloticus (longitud total: 12±0,5 mm). Los especí­­menes fueron expuestos a diferentes concentraciones del plaguicida carbofurán (0; 0,1; 0,5; 1,0; 2,0 y 4,0 mg L-1), a diferentes temperaturas (15, 20 y 25°C) y pH 7. Los valores de LC50 en perí­­odos de 24, 48, 72, 96 h para los juveniles de O. niloticus expuestos al carbofurán fueron 3,00; 2,84; 2,71 y 2,45 mg Lâˆ"™1 para 15°C; 3,00; 2,69; 2,33 y 2,20 mg Lâˆ"™1 para 20°C; y 2,84; 2,44; 1,71; 1,62 mg Lâˆ"™1 para 25°C, respectivamente. Los resultados evidenciaron que con el aumento de la temperatura de 15 a 25°C hubo un aumento de la sensibilidad de los peces al carbofurán de 21,80%; 9,55%; 31,92% y 30,87%, después de 24, 48, 72 y 96 h de exposición, respectivamente. Por otra parte, se observó que en peces expuestos al carbofurán en concentración de 2 mg L-1 ocurrió una disminución en la tasa de hemoglobina total y una elevación en la tasa de glucosa sanguí­­nea, consumo de oxí­­geno y excreción de amonio. Estos resultados indican que la exposición al carbofurán, especialmente a altas temperaturas es un fator significativo a ser considerado en el manejo de la acuacultura.

 

Referências

ADAMS, S.M. 1990 Status and use of biological indicators for evaluating the effects of stress on
fish. American Fisheries Society Symposium Series, 8(1): 1í 8.

ADHIKARI, S.; SARKAR, B.; CHATTERJE, E.A.; MAHAPATRA, C.T.; AYYAPPAN, S. 2004 Effects of cypermethrin and carbofuran on certain hematological parameters and prediction of their recovery in a freshwater teleost, Labeo rohita (Hamilton). Ecotoxicology and Environmental Safety, 58(2): 220í 226.

AGUIAR, L.H.; MORAES, G.; AVILEZ, I.M.; ALTRAN, A.E.; CORRí­Å A, C.F. 2004 Metabolical effects of Folidol 600 on the neotropical freshwater fish matrinxã Brycon cephalus. Environmental Research, 95(2):224í 230.

ARTHUR, J.W.; CORLIS, W.W.; ALLEN, K.N.; HEDTKE, S.F. 1987 Seasonal toxicity of ammonia to five fish and nine invertebrate species. Bulletin of Environmental Contamination and Toxicology, 38(3): 324-331.

ARRUDA, L.F. 2004 Aproveitamento do resí­­duo do beneficiamento da Tilápia do Nilo Oreochromis
niloticus para obtenção de silagem e óleo como subprodutos. São Paulo. 230f. (Dissertação de
Mestrado. Escola Superior de Agricultura Luiz de Queiroz- ESALQ.

BARBIERI, E. 2007 The use of active metabolism and swimming activity to evaluate the
toxicity of dodecyl benzene sodium sulfonate (LAS-C12) on the Mugil platanus (Mullet)
according to temperature and salinity. Water Environment Research, 79(7): 707í 719.

BARBIERI, E. 2009 Effect of 2, 4-D herbicide (2,4-dichlorophenoxyacetic acid) on oxygen consumption and ammonium excretion of juveniles of Geophagus brasiliensis (Quoy & Gaimard, 1824) (Osteichthyes, Cichlidae). Ecotoxicology, 18(1): 55í 60.

BARBIERI, E.; BRANCO, J. O.; FERRÃO, M.C.; HIDALGO, K. R. 2013 Effects of Cadimium and Zinc on Oxygen vonsumption and ammonia excretion of the Sea-bob-shrimp, according to temperature. Boletim do Instituto de Pesca, 39(3): 299-309.

BARBIERI, E.; MOREIRA, P.; LUCHINI, L.A.; HIDALGO, K.R.; MUNOZ, A. 2016 Assessment of acute toxicity of carbofuran in Macrobrachium olfersii (Wiegmann, 1836) at different temperature levels. Toxicology and Industrial Health, 32(1): 7-14.

BARBIERI, E.; BONDIOLI, A.C.V. 2013 Acute toxicity of ammonia in Pacu fish (Piaractus
mesopotamicus, Holmberg, 1887) at different temperatures levels. Aquaculture Research,
44(5): 543-551.

BEGUM, G. 2004 Carbofuran insecticide induced biochemical alterations in liver and muscle
tissues of the fish Clarias batrachus (linn) and recovery response. Aquatic Toxicology, 66(1):
83í 92.

BOSISIO, F.; REZENDE, K.F.O.; BARBIERI, E. 2017 Alterations in the hematological parameters of Juvenile Nile Tilapia (Oreochromis niloticus) submitted to different salinities. Pan-American Journal of Aquatic Sciences, 12(2):146-154.

BOUDOU, A.; RIBEYRE, F. 1989 Fish as ‘‘biological model’’ for experimental studies in ecotoxicology. In: BOUDOU, A. y RIBEYRE, F. (eds) Aquatic ecotoxicology fundamental
concepts and methodologies. CRC Press,Boca Raton, 127í 150pp.

BRETAUD, S.; TOUTANT, J.P.; SAGLIO, P. 2000 Effects of Carbofuran, Diuron, and Nicosulfuron on Acetylcholinesterase Activity in Goldfish (Carassius auratus). Ecotoxicology and Environmental Safety, 47(2):117í 124.

CAMPOS-GARCIA, J.; MARTINEZ, D.S.T.; REZENDE, K.F.O.; SILVA, J.R.M.C.; ALVES, O.L., BARBIERI, E. 2016 Histopathological alterations in the gills of Nile tilapia exposed to carbofuran and multiwalled carbon nanotubes. Ecotoxicology and Environmental Safety, 133: 481-488.

CAMPOS-GARCIA, J.C.; MARTINEZ, D.S.T.; ALVES, O.L.; BARBIERI, E. 2015 Ecotoxicological effects of carbofuran and oxidised multiwalled carbon nanotubes on the freshwater fish Nile tilapia: Nanotubes enhance pesticide ecotoxicity. Ecotoxicology and Environmental Safety, 111: 131-137.

CARR, L.R.; CHAMBERS, J.E. 1996 Kinetic analysis of in vitro inhibition, aging, and reactivation of brain acetylcholinesterase from rat and channel cat fish by paraoxon and chloropyrifos-oxon. Toxicology and Applied Pharmacology, 139(3): 365í 373.

CHRISTIANSEN, P.D.; BROZEK, K.; HANSEN, B.W. 1998 Energetic and behavioral responses by the common goby, Pomatoschistus microps (Kroyer), exposed to linear alkybenzene sulfonate. Environmental Toxicology Chemistry,17(10): 2051í 2057.

COA, F.; MEDEIROS, A.M.Z.; BARBIERI, E. 2017 Record of nile tilapia in the Mandira River, Cananéia, São Paulo State. Boletim do Instituto de Pesca, 43(1): 87-91.

DAMATO, M.; BARBIERI, E. 2012 Estudo da toxicidade aguda e alterações metabólicas provocadas pela exposição do cádmio sobre o peixe Hyphessobrycon callistus utilizado como indicador de saúde ambiental. Mundo Saúde, 36(4), 574-81

DRABKIN, D. 1949 The standardization of hemoglobin measurement. The American Journal of the Medical Sciences, 217(5): 710í 711. EPA. UNITED STATES ENVIRONMENTAL PROTECTION AGENCY 2002 Public Health Goal for Carbofuran in drink water. Office of Environmental health Hazard Assessment. Washington.

F R A C A L O S S I , D . M . ; M E Y E R , G . ; SANTAMARÍA, F.M.; WEINGARTNER, M.; ZANIBONI- FILHO, E. 2004 Desempenho do jundiá, Rhamdia quelen, e do dourado, Salminus brasiliensis, em viveiros de terra na região sul do Brasil. Acta Scientiarum, 26(3): 345-352.

FRY, F.E.J. 1971 The Effect of Environmental Factors on the Physiology of Fish. In: HOAR, W.S.; RANDALL, D.J. (Eds.) Fish Physiology. Academic Press, New York, 98p.

HAMILTON, M.A.; RUSSO, R.C.; THURSTON, R.V. 1977. Trimmed Spearman-Karber Method
for Estimating Median Lethal Concentrations in Toxicity Bioassays. Environmental Science &
Technology, 11(7): 714í 719.

HANSEN, B.; FOTEL, R.L.; JESEN, N.J.; WITTRUP, L. 1997 Physiological effects of the detergent linear alkylbenzene sulphonate on blue mussel larvae Mytilus edulis in laboratory and mesocosm experiments. Marine Biology,128(6): 627í 637

HERNÁNDEZ-MORENO, D.; PÉREZLÓPEZ, M.; SOLER, F.; GRAVATO, C.; GUILHERMINO, L. 2011 Effects of carbofuran on the sea bass (Dicentrarchus labrax L.): Study of biomarkers and behaviour alterations. Ecotoxicology and Environmental Safety, 74(10): 1905-1912.

JASH, N.B.; BHATTACHARAYA, S. 1983 Delayed toxicity of carbofuran in fresh water teleost Channa punctatus. Indian Journal Experimental Biology, 17(6): 693-697.

JYOTHI, B.; NARAYAN, G. 1999 Certain pesticide-induced carbohydrate metabolic disorders in the serum of freshwater fish Clarias batrachus (Linn.). Food Cheistryand Toxicology, 37(4): 417í 421.

KARASU-BENLI, A.C.; Kí­–KSAL, G. 2005 The acute toxicity of ammonia on tilapia (Oreochromis niloticus L.) larvae and fingerlings. Turkish Journal of Veterinary and Animal Sciences, 29(3): 339-344.

LEMAIRE, P.; STURVE, J.; FORLIN, L.; LIVINGSTONE, D.R. 1996 Studies on aromatic hydrocarbon quinone metabolism and DT-diaphorase function in liver of fish species. Marine Environmental Research, 2(1í 4): 317-321.

MACHADO, M.R; FANTA, E. 2003 Effects of the organophosphorous methyl parathion on the branchial epithelium of a freshwater fish Metynnis roosevelti. Brazilian Archive of. Biology
and Technology, 46(3): 361í 372.

MARTINEZ, D.S.T.; ALVES, O.L.; BARBIERI, E. 2013 Carbon nanotubes enhanced the lead toxicity
on the freshwater fish. In: Journal of Physics. Conference Series, IOP Publishing, 12043p.

MAYZAUD, P.; CONOVER, R.J. 1988 O:N atomic ratio as a tool to describe zooplankton metabolism. Marine Ecology Progress Serie, 45(3): 289í 302.

M I S R A , V . ; L A L , H . ; C H A W L A , G . ; V I S W A N A T H A N , P . N . 1 9 8 5 athomorphological changes in gills of fish fingerlings (Cirrhina mrigala) by linear alky benzene sulfonate. Ecotoxicology and Environmental Safety, 10(3): 302í 308.

MORAES, G.; POLEZ, V.L.; IWAMA, G.K. 2004 Biochemical responses of two Erythrynidae fish to environmental ammonia. Brazilian Journal of Biology, 64(1): 95-102.

PATHIRATNE, A.; GEORGE, S.G. 1998 Toxicity of malathion to Nile tilapia, Oreochromis niloticus and modulation by other environmental contaminants. Aquatic Toxicology, 43(2): 261í 271.

PERSON, L.E.; RUYET, J.; BOEUF, G.; ZAMBONINO, J.I.; HELGASON, S.L.E.; ROUX, A. 1998 Short-term physiological changes in turbot and seabream juveniles exposed to exogenous ammonia. Comparative Biochemistry and Physiology, 119(2): 511-518.

RANDALL, D.J; TSUI, T.K.N. 2002 Ammonia toxicity in fish. Marine Pollution Bulletin, 45(1): 17-23.

RANZANI í  PAIVA, M. J. T.; PÁDUA, S.B.; TAVARES í  DIAS, M.; EGAMI, M.I. Métodos para análise hematologia de peixes. 1 ed. Maringá: Editora da Universidade Estadual de Maringá, 2013. 142p

RATH, S; MISRA, B.N. 1980 Age-related changes in oxygen consumption by gill, brain and muscle tissues of Tilapia mossambica Peters exposed to Dichlorvos (DDVP). Environmental Pollution (Ser A), 23(1): 95í 101.

ROSAS, C.; MARTINEZ, E.; GAXIOLA, G.; BRITO, R.; SANCHEZ, A.; SOTO, L.A. 1999 The effect of dissolved oxygen and salinity on oxygen consumption, ammonia excretion, and osmotic pressure of Penaeus setiferus Juveniles. Journal of Experimental Marine Biology and Ecology, 234(1): 41í 57.

SANTOS, D.B.; BARBIERI, E ; BONDIOLI, A.C. ; MELO, C.B. 2014 Effects of Lead in white shrimp (Litopenaeus schmitti) metabolism regarding salinity. O Mundo da Saúde, 38(1):16-23.

SARAVANA, P.B.; GERALDINE, P. 2001 Biochemical stress responses in tissues of the prawn Macrobrachium malcolmsonii on exposure to endosulfan. Pesticides Biochemistry and Physiology, 70(1): 27í 41.

SCHRECK, C.B. 1990 Physiological, Behavioral and performance indicators of stress. American
Fisheries Society Symposium Series, 8(1): 29í 37.

SILVA, H.C.; MEDINA, H.S.G.; FANTA, E.; BACILA, M. 1993 Sub-lethal effects of the organophosphate Folidol 600 Methyl Parathion on Callichthys callichthys (Pisces, Teleostei). Comparative Biochemistry and Physiology, 105 C(2): 197í 201.

SOLORZANO, L. 1969 Determination of ammonia in natural waters by the phenolhypochlorite
method. Paraí­­ba. (Dissertação de Mestrado. Universidade Estadual da Paraí­­ba). STRAUSS, D.L.; CHAMBERS, J.E. 1995 Inhibition of acetylcholinesterase and aliesterase of fingerling channel catfish by chlorpyrifos, parathion and S, S, S-tributyl phosphorotrithioate (DEF). Aquatic Toxicology, 33(2): 311í 324.

SUKUMAR, A.; KARPAGAGANAPATHY, P.R. 1992 Pesticide-induced atresia in ovary of a fresh water fish, Colisa lalia (HamiltonBuchanan). Bulletin of Environmental Contamination and Toxicology, 48(3): 457-462.

SVOBODA, M.; LUSKOVA, V.; DRASTICHOVA, J.; ILABEK, V. 2001 The effect of diazinon on hematological indices of common carp (Cyprinus carpio L.). Acta Veteterinaria (Brno),
70(4): 457-465.

TWITCHEN, I.D.; EDDY, F.B. 1994 Sublethal effects of ammonia on freshwater fish. In:
Mí­Å“LLER, R; LLOYD, R. (Eds.) Sublethal and Chronic Effects of Pollutants on Freshwater Fish.
Blackwell Scientific Publications, Fishing New Books, Londres, UK. WARING, C.P.; MOORE, A. 1997 Sublethal effects of a carbamate pesticide on pheromonal mediated endocrine function in mature male Atlantic salmon (Salmo salar L.). Fish Physiology and Biochemistry, 17(2):203-211.

WENDELAAR, B.S. 1997 The stress response in fish. Physiological Reviews, 77(3): 591-625.

WICKS, B.J; RANDALL, D.J. 2002 The effect of sub-lethal ammonia exposure on fed and unfed rainbow trout: the role of glutamine in regulation ammonia. Comparative Biochemistry and Physiology, 132(2): 275í 285.

WINKLER, L. 1888 Methods for measurement of dissolved oxygen. Ber Deutsch Chem Ges 21,

WINTROBE, M.M. 1978 Clinical Hematology. Kipton, London.p132

WU, J.P.; CHEN, H.C. 2004 Effects of cadmium and zinc on oxygen consumption, ammonium
excretion, and osmoregulation of white shrimp (Litopenaeus vannamei). Chemosphere, 57(11): 1591í  1598.

Downloads

Publicado

2017-12-15

Edição

Seção

Artigo cientí­fico

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 3 > >>