POLISSACARÍDEOS NÃO AMILÁCEOS EM DIETAS PARA HÍBRIDO DE SURUBIM: EFEITOS SOBRE A PLASTICIDADE DO METABOLISMO

Autores

  • Daniela Ferraz Bacconi CAMPECHE Embrapa Semiárido
  • Douglas Henrique de Holanda ANDRADE Universidade Federal de Pernambuco, Departamento de Bioquí­­mica
  • Janilson Felix SILVA Universidade Federal de Pernambuco, Departamento de Bioquí­­mica
  • José Fernando Bibiano MELO Universidade Federal do Vale do São Francisco, Departamento de Zootecnia http://orcid.org/0000-0003-2068-4641
  • Ranilson de Souza BEZERRA Universidade Federal de Pernambuco, Departamento de Bioquí­­mica

DOI:

https://doi.org/10.20950/1678-2305.2019.45.3.443

Palavras-chave:

adaptação, carní­­voro, farelo de milho, farinha de manga, fisiologia, Pseuplatystoma fasciatum x Pseudoplatystoma corruscans

Resumo

O objetivo deste estudo foi avaliar o efeito da farinha de manga, um polissacarí­­deos não amiláceo, como fonte de carboidrato na plasticidade do metabolismo e indicadores de desempenho no surubim hí­­brido (Pseudoplatystoma fasciatum x P. corruscans) um peixe carní­­voro tropical. Juvenis (±14.5g peso inicial) foram alimentados com 3% da biomassa total durante 60 dias, com 4 dietas experimentais substituindo 0, 33, 66 e 100% do farelo de milho. O crescimento final foi avaliado, mas diferenças significativas (p<0.05) não foram observadas entre os tratamentos. A atividade da protease total alcalina foi significativamente menor no tratamento onde houve 100% de substituição do farelo de milho. Entretanto, ní­­veis de tripsina também diminuí­­ram quando 100% do farelo de milho foi substituí­­do por farinha de manga, mas sem diferença significativa. O zimograma mostrou bandas de atividade de protease e amilase em todos os tratamentos. Colesterol (0%- 141.83±46.10; 100%- 71.36±14.40 mg.dL-1) e proteí­­na total (0%- 3.98±0.94; 100%- 1.70±1.03 mg.dL-1) plasmáticos, diminuí­­ram í­Â  medida que os ní­­veis de farinha de manga aumentaram nas dietas. Por outro lado, glicose (0%- 105.08±31.24; 100%- 128.11±24.51 mg.dL-1) e aminoácidos livres (0%- 24.51±2.62; 100%- 38.13±8.94 nmoles.ml1 ) no plasma, aumentaram. Embora o crescimento não foi aumentado, a fonte de carboidrato afetou o metabolismo do animal, o que mostra adaptação metabólica do hí­­brido. O resultado sugere que farinha de manga pode substituir até 33% de farelo de milho em dietas para Pseudoplatystoma sp.

Referências

Adamidou, S.; Nengas, I.; Alexis, M.; Foundoulaki, E.; Nikolopoulou, D.;Campbell, P.; Karacostas, I.; Rigos, G.; Bell, G.J.; Jauncet, K. 2009. Aparent nutrient digestibility and gastrointestinal evacuation time in European seabass (Dicentrarchus labrax) fed diets containing different levels of legumes. Aquaculture, 289(1/2): 106-112. https://
doi.org/10.1016/j.aquaculture.2009.01.015

Almeida, L.C.; Avilez, I.M.; Honorato, C.A.; Hori, T.S.F.; Moraes, G. 2011. Growth and metabolic responses of tambaqui (Colossoma macropomum) fed diferente levels of protein and lipid. Aquaculture Nutrition, 17(2):
253-262. https://doi.org/10.1111/j.1365-2095.2010.00759.x

AOAC International. 1990. Methods of Analysis of the Association of the AOAC International, 15th. AOAC International, Arlington, VA.

Arslan, M.; Dabrowski, K.; Portella, M.C. 2009. Growth, fat content and fatty acid profile of South American catfish, surubim (Pseudoplatystoma fasciatum) juveniles fed live, commercial and formulated diets. Journal of Applied
Ichthyology, 25(1): 73-78. https://doi.org/10.1111/j.1439-0426.2008.01154.x

Besson, M.; Komen, H.; Aubin, J.; Boer, I.J.M.; Poelmam, M.; Quillet, M.; Vancoillie, C.; Vandeputte, M.; Arendonk, J.A.M. 2014. Economic values for growth and feed efficiency for fish farming in recirculating aquaculture system with density and nitrogen output limitations: a case study with African catfish (Clarias garipineaus). Journal of Animal Science, 92(12): 5394-5405. https://doi.org/10.2527/jas.2014-8266

Bezerra, R.S.; Lins, E.J.F.; Alencar, R.B.; Paiva, P.M.G.; Chaves, M.E.C.;Coelho, L.C.B.B.; Ccarvalho-Junior, L.B. 2005. Alkaline proteinase from intestine of Nile tilapia (Oreochromis niloticus). Process Biochemistry,40(5): 1829-1834. https://doi.org/10.1016/j.procbio.2004.06.066

Bernfeld, P. 1955. Amylases, alpha and beta. In: Colowick SP, Kaplan NO (Eds.).Methods in enzymology. Academic Press, New York, NY. p. 149-158.

Bidinotto, P.M.; Moraes, G.; Souza, R.H.S. 1997. Hepatic glycogen in eight tropical fresh water teleost fish: a procedure for field determinations of micro samples. Boletim Técnico do CEPTA, 10(1): 53-60.

Booth, M.A.; Moses, M.D.; Allan, G.L. 2013. Utilization of carbohydrate by yellowtail kingfish Seriola lalandi. Aquaculture, 376-379: 151-161. https://doi.org/10.1016/j.aquaculture.2012.11.024

Castro, C.; Corraze, G.; Pérez-Jiménez, A.; Larroquet, L.; Cluzeaud, M.; Panserat, S.; Oliva-Teles, A. 2015. Dietary carbohydrate and lipid source affect cholesterol metabolism of European sea bass (Dicentrarchus labrax) juveniles. British Journal of Nutrition, 114: 1143-1156. https://doi.org/10.1017/S0007114515002731

Chacrabarti, I.; Gani, M.A.; Chaki, K.K.; Sur, R.; Misra, K.K. 1995. Digestive enzymes in 11 freswater teleost fish species in relation to food habit and niche segregation. Comparative Biochemistry Physioly í  Part A Physioly, 112(1): 167-177.

Copley, N. G. 1941. Alloxan and ninhydrin test. Analyst, 66: 492-493.

Correa, C.F.; Aguiar, L.H.; Lundestedt, M.L.; Moraes, G. 2007. Responses of digestive enzymes of tambaqui (Colosomma macropomum) to dietary corn starch changes and metabolic inferences. Comparative Biochemistry Physiology - Part A í  Physiology, 147(4): 857-862. https://doi.org/10.1016/j.cbpa.2006.12.045

Couto, A.; Enes, P.; Peres, H.; Oliva-Teles, A. 2012. Temperature and dietary starch level affected protein but not starch digestibility in gilthead sea bream juveniles. Fish Physiology and Biochemistry, 38(3): 595-601. https://doi.org/10.1007/s10695-011-9537-5

Dabrowski, K.; Portella, M.C. 2006. Feeding plasticity and nutritional physiology in tropical fishes. In: Val A L, Val V M F de A, Randall D J (Eds.) The physiology of tropical fishes. Elsevier, Amsterdam, Netherlands. p. 155-224.

Enes, P.; Panserat, S.; Kaushik, S. 2009. Nutritional regulation of hepatic glucose metabolism in fish. Fish Physiology and Biochemistry, 35(3):519-539. https://doi.org/10.1007/s10695-008-9259-5

Enes, P.; Peres, H.; Pousão-Ferreira, P.; Sanches-Gurmaches, J.; Navarro, I.;Gutiérrez, J.; Oliva-Teles, A. 2012. Glycemic and insulin responses in white sea bream Diplodus sargus, after intraperitoneal administration
of glucose. Fish Physiology and Biochemistry, 38(3): 645-652.https://doi.org/10.1007/s10695-011-9546-4

Enes, P.; Pousão-Ferreira, P.; Salmerón, C.; Capilla, E.; Navarro, I.; Gutiérrez, J.;Oliva-Teles, A. 2013. Effect of guar gum on glucose and lipid metabolism in white sea bream Diplodus sargus. Fish Physiology and Biochemistry,
39(2): 159-169. https://doi.org/10.1007/s10695-012-9687-0

FAO. 2013. Food and agriculture organization of the United Nations statistics. FAO, Rome.

Fernández, I.; Moyano, F.J.; Diaz, M.; Martinez, T. 2001. Characterization of [alpha]-amylase activity in five species of Mediterranean sparid fishes (Sparidae, Teleostei). Journal of Experimental Marine Biology and Ecology, 262(1): 1-12. https://doi.org/10.1016/S0022-0981(01)00228-3

Francis, G.; Makkar, H.P.S.; Becker, K. 2001. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish.Aquaculture, 199(3/4): 197-227. https://doi.org/10.1016/S0044-
8486(01)00526-9

Fuentealba, C.; Bera, M.; Jessen, B.; Sace, F.; Stevens, G.J.; Trajkovic, D.;Yang, A.H.; Evering, W. 2011. Evaluation of the effects of a VEGFR-2 inhibitor compound of alanine aminotransferase gene expression and enzymatic activity in the rat liver. Comparative Hepatology, 10(8): 1-8. https://doi.org/10.1186/1476-5926-10-8

Gatesoupe, F.J.; Huelvan, C.; Bayon, N.L.; Severe, A.; Aasen, I.M.; Degnes,K.F.; Mazurais, D.; Panserat, S.; Zambinino-Infante, J.; Kaushik, S.J. 2014. The effects of dietary carbohydrate sources and forms on metabolic response and intestinal microbiota in sea bass juveniles, Dicentrarchus labrax. Aquaculture 422-423: 47-53. https://doi.org/10.1016/j.aquaculture.2013.11.011

Garcia-Carreí­±o, F.L.; Dimes, L.E; Haard, N.F. 1993. Substrate-gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors. Analytical Biochemistry, 214(1): 65-69.

Garcia-Magaí­±a, M.L.; Garcia, H.S.; Bello-Pérez, L.A.; Sayago-Ayerdi,S.G.; Oca, M.M.M. 2013. Functional properties and dietary fiber characterization of mango processing by-products (Mangifera indica L., cv. Ataulfo and Tommy Atkins). Plant Foods for Human Nutrition, 68(3): 254-258. https://doi.org/10.1007/s11130-013-0364-y

Hiller, A.; Greif, B.L.; Beckman, W.W. 1948. Determination of protein in urine by the biuret method. Journal of Biological Chemistry, 176(3) 1421-1429.

IBGE í  Instituto Brasileiro de Geografia e Estatí­­stica í  Produção da Pecuária Municipal. 2016.

Kamalan, B.S.; Medale, F.; Kaushik, S.; Polakof, S.; Skiba-Cassy, S.; Panserat, S. 2012. Regulation of metabolism by dietary carbohydrates in two lines of rainbow trout divergently selected for muscle fat content. Journal of Experimental Biology, 215(15): 2567-2578.https://doi.org/10.1242/jeb.070581

Kamalan, B.S.; Medale, F.; Panserat, S. 2017. Utilisation of dietary carbohydrate in farmed fishes: New insights on influencing factors, biological limitations and future strategies. Aquaculture, 467: 3- 27. http://dx.doi.org/10.1016/j.aquaculture.2016.02.007

Kassahun, A.; Waidbacher, H.; Zollitsch, W. 2012. Proximate composition of selected potential feedstuffs for small-scale aquaculture in Ethiopia. Livestock Research Rural Development, 24: 6.

Krogdahl, A.; Sundby, A.; Olli, J.J. 2004. Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) digest and metabolize nutrients differently. Effects of water salinity and dietary starch level. Aquaculture 229(1/4): 335-360. https://doi.org/10.1016/S0044-8486(03)00396-X

Kumar, S.; Sahu, N.P.; Pal, A.K.; Sagar, V.; Sinha, A.K.; Baruah, K. 2009. Modulation of key metabolic enzyme of Labeo rohita (Hamilton) juvenile: effect of dietary starch type, protein level and exogenous α-amylase in the diet. Fish Physiology and Biochemistry, 35(2): 301-315. https://doi.org/10.1007/s10695-008-9213-6

Kumar, V.; Sahu, N.P.; Pal. A.K.; Kumar, S.; Ranjan, L.; Baruah, K. 2010.Modulation of key enzymes of glycolysis, gluconeogenesis, amino acid catabolism, and TCA cycle of the tropical freshwater fish Labeo rohita fed gelatinized and non-gelatinized starch diet. Fish Physiology and Biochemistry, 10(3): 491-499. https://doi.org/10.1007/s10695-009-9319-5

Lemieux, H.; Blier, P.; Dutil, J.D. 1999. Do digestive enzymes set a physiological limit on growth rate and food conversion efficiency in the Atlantic Cod (Gadus morhua)? Fish Physiology and Biochemistry 20(4): 293-303.

Li, X.F.; Wang, W.B.; Liu, G.Z.; Zu, J.J. 2013. Effects of dietary carbohydrate/lipid ratios on growth performance, body composition and glucose metabolism of fingerling blunt snout bream Megalobrama amblycephala. Aquaculture Nutrition, 19(5): 701-708. https://doi.org/10.1111/anu.12017

Lin, S.; Mai, K.; Tan, B. 2010. Effects of four vegetable protein supplementation on growth, digestive enzyme activities, and liver functions of juvenile Tilapia, Oreochromis niloticus x Oreochromis aureus. Journal of the World Aquaculture Society, 41(4): 583-593.https://doi.org/10.1111/j.1749-7345.2010.00398.x

Lundstedt, L.M.; Melo, J.F.B.; Moraes, G. 2004. Digestive enzymes and metabolic profile of Pseudoplatystoma corruscans (Teleostei: Siluriformes) in response to diet composition. Comparative Biochemistry and Physiology. B, Biochemistry & Molecular Biology,137(3): 331-339. https://doi.org/10.1016/j.cbpc.2003.12.003

Makkar, H.P.S. 2000. Quantification of tannins in tree foliage: A laboratory manual. FAO/IAEA Edition, Vienna.

Men, K.; Ai, Q.; Mai, K.; Xu, W.; Zhang, Y.; Zhou, H. 2014. Effects of dietary corn gluten meal on growth, digestion and protein metabolism in relation to IGF- I gene expression of Japanese seabass, Lateolabrax japonicus. Aquaculture, 428-429: 303-309. http://dx.doi.org/10.1016/j.aquaculture.2014.03.028

Meshcheryakova, O.V.; Churova, M.V.; Nemova, N.N. 2016. Correlation between the activity of enzymes involved in energy and carbohydrate metabolism with size and weight parameters of some Coregonidae and Salmonidae fish. Contemporary Problems of Ecology, 9(2): 203-209. https://doi.org/10.1134/S1995425516020050

Meriac, A.; Eding, E.H.; Schrama, J.; Kamstra, A.; Verreth, J.A.J. 2014. Dietary carbohydrate composition can change waste production and biofilter load in recirculating aquaculture systems. Aquaculture 420- 421: 254-261. https://doi.org/10.1016/j.aquaculture.2013.11.018

Melo, J.F.B.; Lundestedt, L.M.; Tavares-Dias, M.; Moraes, G. 2006. Efeito do conteúdo de proteí­­na na dieta sobre os parí­¢metros hematológicos e metabólicos do bagre Sul Americano Rhamdia quelen. Revista Ciência Agroambiental, 1(1): 43-52.

Melo, J.F.B.; Lundestdt, L.M.; Moraes, G.; Inoue, L.A.K.A. 2012. Effect of different concentrations of protein on digestive system of juvenile silver catfish. Arquivos Brasileiros de Medicina Veterinária e Zootecnia, 64(2): 450-457. http://dx.doi.org/10.1590/S0102-09352012000200027

Moon, T.W. 2001. Glucose intolerance in teleost fish: fact or fiction?Comparative Biochemistry and Physiol - Part B í  Biochemistry and Molecular Biology, 129(2/3): 243-249. https://doi.org/10.1016/S1096-4959(01)00316-5

Moyano, F.J.; Cardente, G.; Higuera, M. 1991. Nutritive and metabolic utilization of proteins with glutamic acid content by the rainbow trout Oncorhynchus mykiss. Comparative Biochemistry and Physiology -Part A í  Physiology, 100(3): 759-762.

Pereira, L.G.R.; Aragão, A.L.S.; Santos, R.D.; Azevedo, J.A.G.; Neves, A.L.A.; Ferreira, A.L.; Chizzotti, M.L. 2013. Productive performance of confined sheep fed mango meal. Arquivos Brasileiros de Medicina Veterinaria e Zootecnia, 65(3): 675-680. http://dx.doi.org/10.1590/S0102-09352013000300009

Pérez-Jimenes, A.; Cardenete, G.; Morales, A. E.; Garcí­­a-Alcázar, A.; Abellán, E.; Hidalgo, M.C. 2009. Digestive enzymatic profile of Dentex dentex and response to different dietary formulations.Comparative Biochemistry and Physiology - Part A: Molecular and Integrative Physiology, 154 (1):157-164. https://doi.org/10.1016/j.cbpa.2009.05.126

Polakof, S.; Panserat, S.; Soengas, J.L.; Moon, T.W. 2012. Glucose metabolism in fish: a review. Journal of Comparative Physiology B,182(8): 1015-1045. https://doi.org/10.1007/s00360-012-0658-7

Song, M. Q.; Chao-Ming, S.; MeiLin, S.; JunChen, Y.; MianShen, H.; Luo, L. 2018. Effect of starch sources on growth, hepatic glucose metabolism and antioxidant capacity in juvenile largemouth bass,Micropterus salmoides. Aquaculture, 490(1): 355-361. https://doi.org/10.1016/j.aquaculture.2018.03.002

Rêgo, M.M.T; Neiva, J.N.M.; Rêgo, A.C.; Candido, M.J.D.; Carneiro,M.S.S.; Lobo, R.N.B. 2010. Chemical and bromatological characteristics of elephant grass silages containg a mango byproduct. Revista Brasileira de Zootecnia, 39(1): 81-87. http://dx.doi.org/10.1590/S1516-35982010000100011

Ren, M.; Ai, Q.; Mai, Q.; Ma, H.; Wang, X. 2011. Effect of dietary carbohydrate level on growth performance, body composition, apparent digestibility coefficient and digestive enzymes activities of juvenile cobia, Rachycentron canadum L. Aquaculture Research, 42(10):1467-1475. https://doi.org/10.1111/j.1365-2109.2010.02739.x

Salgado, J.M.; Curte, F.; Mansi, D.N. 2008. Effect of gala apples (Malus domestica Borkh) on lipidemia of hyperlipidemic rats. Ciência e Tecnologia de Alimentos, 28(2): 477-484. http://dx.doi.org/10.1590/S0101-20612008000200032

Santos, J.F.; Castro, P.F.; Leal, A.L.G.; Freitas-Junior, A.C.V.; Lemos, D.;Carvalho-Junior, L.B.; Bezerra, R.S. 2013. Digestive enzyme activity in juvenile Nile tilapia (Oreochromis niloticus, L.) submitted to different dietary levels of shrimp protein hydrolysate. Aquaculture International, 21(3): 563-577. https://doi.org/10.1007/s10499-012-9589-2

Saravanan, S.; Schrama, J.W.; Figueiredo-Silva, A.C.F.; Kaushik, S.J.; Verreth, J.A.J.; Geurden, I. 2012. Constraint on energy intake in fish: the link between diet composition, energy metabolism, and energy intake in raibow trout. Plos One 7:e34743. https://doi.org/10.1371/journal.pone.0034743

Siddhuraju, P.; Becker, K. 2001. Preliminary nutritional evaluation of Mucuna seed meal (Mucuna pruriens var. utilis) in commom carp (Ciprinus carpio L.): an assessment by growth performance and feed utilisation. Aquaculture, 196 (1-2): 105-123. https://doi.org/10.1016/S0044-8486(00)00577-9

Souza, R.C.; Melo, J.F.B.; Nogueira-Filho, R.M.; Campeche, D.F.B.;Figueiredo, R.R.C.C.R. 2013. Influência da farinha de manga no crescimento e composição corporal da tilápia do Nilo. Archivos de Zootecnia, 62(238): 217-225.

Souza, A.M.; Campeche, D.F.B.; Moraes, G.; Melo, F.V.S.T.; Neto-Cruz, M.A.; Melo, J.F.B. 2018. Replacing cornmeal with mango meal in diets for juvenile tambaqui Colossoma macropomum: growth and metabolic parameters. Boletim do Instituto de Pesca, 44(3): 1-7.https://doi.org/10.20950/1678-2305.2018.248

Sunde, J.; Taranger, J.L.; Rungruangsak-Torrisen, K. 2001. Digestive proteases activities and free amino acids in white muscle as indicators for feed conversion efficiency and growth rate in Atlantic salmon (Salmo salar L.). Fish Physiology and Biochemistry, 25(4): 335-345.https://doi.org/10.1023/A:1023233024001

Torrisen-Rungruangsak, K.; Moss, R.; Andresen, L.H.; Berg, A.; Waabo, R. 2006. Different expressions of trypsin and chymotrypsin in relation to growth in Atlantic salmon (Salmo salar L.). Fish Physiology and Biochemistry, 32(1): 7-23. https://doi.org/10.1007/s10695-005-0630-5

Ye, W.; Han, D.; Zhu, X.; Yang, Y.; Jin, J.; Xie, S. 2016. Comparative study on dietary protein requirements for juvenile and pre‐adult gibel carp (Carassius auratus gibelio var. CAS III). Aquaculture Nutrition,23(4): 755-765. https://doi.org/10.1111/anu.12442

Yengkokpam, S.; Sahu, N.P.; Pal, A.K.; Mukherjee, S.C.; Debnath, D. 2006.Gelatinezed carbohydrates in the diet of Catla catla fingerlings: effect of levels and sources on nutrient utilization, body composition and tissue
enzyme activities. Asian-Australian Journal of Animal Science, 20: 89-99.

Youself, M.I.; Awad, T.I.; Mohamed, E.H. 2006. Deltamethrin-induced oxidative damage and biochemical alterations in rat and its attenuation by Vitamin E. Toxicology, 227(3): 240-247. https://doi.org/10.1016/j. tox.2006.08.008

Zhang, N.; Huang, C.; Ou, S. 2011. In vitro binding capacities of three dietary fibers and their mixture for four toxic elements, cholesterol and bile acids. Journal of Hazardous Materials, 186(1): 236-239. https:// doi.org/10.1016/j.jhazmat.2010.10.120

Zheng, Q.; Wen, X.; Han, C. 2012. Effect of replacing soybean meal with cottonseed meal on growth, hematology, antioxidant enzymes activity and expression for juvenile grass carp, Ctenopharyngodon idellus. Fish Physiology and Biochemistry, 38(4): 1059-1069. https://doi.org/10.1007/s10695-011-9590-0

Downloads

Publicado

2019-09-02

Edição

Seção

Artigo cientí­fico

Artigos mais lidos pelo mesmo(s) autor(es)