ADESÃO DE BACTÉRIAS PATOGí­Å NICAS A POLIESTIRENO, PELE E MUCO INTESTINAL DE GILTHEAD SEABREAM, CAPACIDADE INFECCIOSA E SUSCEPTIBILIDADE A ANTIBIÓTICOS

Autores

  • Said Ben Hamed Unidade Laboratorial de Referência de Patologia de Organismos Aquáticos, Instituto de Pesca, Centro de Pesquisa de Aquicultura,
  • Francisco Guardiola University of Murcia, Faculty of Biology, Department of Cell Biology & Histology, Fish Innate Immune System Group,
  • Patricia Morcillo University of Murcia, Faculty of Biology, Department of Cell Biology & Histology, Fish Innate Immune System Group,
  • Pilarga González-Párraga University of Murcia, Faculty of Biology, Department of Cell Biology & Histology, Fish Innate Immune System Group,
  • María José Tavares Ranzani-Paiva Unidade Laboratorial de Referência de Patologia de Organismos Aquáticos, Instituto de Pesca, Centro de Pesquisa de Aquicultura,
  • María Ángeles Esteban University of Murcia, Faculty of Biology, Department of Cell Biology & Histology, Fish Innate Immune System Group,

DOI:

https://doi.org/10.20950/1678-2305.2019.45.4.490

Palavras-chave:

pathogen adhesion, skin mucus, gut mucus, SAF-cell line, antibiotic susceptibility, gilthead seabream (Sparus aurata L.)

Resumo

Estudar o link entre propriedades de adesão, capacidades infecciosas e resistência a antibióticos de bactérias patogênicas pode ajudar a tratar doenças de peixes. A adesão de dez bactérias patogênicas foi testada em placas de microtitulação vazias, revestidas com muco da pele ou do intestino, fixadas com metanol, coradas com 2% de violeta cristal e reveladas pelo modo colorimétrico. A capacidade infecciosa foi realizada expondo a linha celular de fibroblasto de dourada (SAF-1) a 107-108 CFUmL-1 de bactérias patogénicas. A viabilidade celular foi medida 3h, 9h e 20 horas após a infecção. A sensibilidade aos antibióticos foi executada por difusão em disco. Os dados mostram que todas as bactérias testadas aderem ao poliestireno. Para o muco cutí­¢neo, Vibrio harveyi, Vibrio alginolyticus, Halomonas venusta e Aeromonas bivalvium foram moderadamente aderentes. Dietzia maris foi fortemente aderente. Para o muco intestinal, 60% das bactérias testadas eram fracamente aderentes e 40% não aderentes. Para infecção, D. maris, V. harveyi e A. bivalvium diminuí­­ram a viabilidade celular para 89% após apenas 3h. Após 20h, o percentual de viabilidade variou entre 1% e 32%. Todos os isolados apresentaram resistência a 1000 mg mL-1 de sulfonamida, 60% foram resistentes í­Â  sulfonamida e í­Â  penicilina G. Os achados atuais podem ser relevantes na aqüicultura e ressaltam a importí­¢ncia da ligação entre adesão, capacidade infecciosa e suscetibilidade a antibióticos de bactérias patogênicas para evitar doenças em peixes.

Referências

Acosta, F.; Vivas, J.; Padilla, D.; Vega, J.; Bravo, J.; Grasso, V.; Real, F. 2009. Invasion and survival of Photobacterium damselae subsp. piscicida in nonphagocytic cells of gilthead sea bream Sparus aurata L. Journal of Fish Diseases, 32(6): 535-541. http://dx.doi.org/10.1111/j.1365-2761.2009.01023.x. PMid:19460085.

Angulo, F.J.; Collignon, P.; Wegener, H.C.; Braam, P.; Butler, C.D. 2005. The routine use of antibiotics to promote animal growth does little to benefit protein under nutrition in the developing world. Clinical Infectious Diseases, 41(7): 1007-1013. http://dx.doi.org/10.1086/433191. PMid:16142667.

Baker, A.S.; Greenham, L.W. 1988. Release of gentamicin from acrylic bone cement: elution and diffusion studies. The Journal of bone and joint surgery, 70(10): 1551-1557. http://dx.doi.org/10.2106/00004623-198870100-00015. PMid:3198680.

Balcázar, J.L.; Vendrell, D.; Blas, I.; Ruiz-Zarzuela, I.; Gironés, O.; Múzquiz, J.L. 2007. In vitro competitive adhesion and production of antagonistic compounds by lactic acid bacteria against fish pathogens. Veterinary Microbiology, 122(3-4): 373-380. http://dx.doi.org/10.1016/j.vetmic.2007.01.023. PMid:17336468.

Balebona, M.C.; Morinigo, M.A.; Faris, A.; Krovacek, K.; Mansson, I.; Bordas, M.A.; Borrego, J.J. 1995. Influence of salinity and pH on the adhesion of pathogenic Vibrio strains to Sparus aurata skin mucus. Aquaculture, 132(1-2): 113-120. http://dx.doi.org/10.1016/0044-8486(94)00376-Y.

Ballesteros, E.R.; Barbieri, E.; Pinto, A.B.; Oliveira, R.S.; Oliveira, A.J.F.C. 2016. qualidade microbiológica de ostras (Crassostrea sp) e de águas coletadas em cultivos e em bancos naturais de Cananeia (SP). Boletim do Instituto de Pesca, 42(1): 134-144. http://dx.doi.org/10.20950/1678-2305.2016v42n1p134.
Basson, A.; Flemming, L.A.; Chenia, H.Y. 2008. Evaluation of adherence, hydrophobicity, aggregation, and biofilm development of Flavobacterium johnsoniae-like isolates. Microbial Ecology, 55(1): 1-14. http://dx.doi.org/10.1007/s00248-007-9245-y. PMid:17401596.

Béjar, J.; Borrego, J.J.; Alvarez, M.C. 1997. A continuous cell line from the cultured marine fish gilthead seabream (Sparus aurata L.). Aquaculture, 150(1-2): 143-153. http://dx.doi.org/10.1016/S0044-8486(96)01469-X.

Ben Hamed, S.; Tavares Ranzani-Paiva, M.J.; Tachibana, L.; Carla Dias, D.; Ishikawa, C.M.; Esteban, M.A. 2018. Fish pathogen bacteria: adhesion, parameters influencing virulence and interaction with host cells. Fish & Shellfish Immunology, 80: 550-562. http://dx.doi.org/10.1016/j.fsi.2018.06.053. PMid:29966687.

Benhamed, S.; Guardiola, F.A.; Mars, M.; Esteban, M.A. 2014. Pathogen bacteria adhesion to skin mucus of fishes. Veterinary Microbiology, 171(1-2): 1-12. http://dx.doi.org/10.1016/j.vetmic.2014.03.008. PMid:24709124.

Blasco, M.D.; Esteve, C.; Alcaide, E. 2008. Multiresistant waterborne pathogens isolated from water reservoirs and cooling systems. Journal of Applied Microbiology, 105(2): 469-475. http://dx.doi.org/10.1111/j.1365-2672.2008.03765.x. PMid:18298535.

Bordas, M.A.; Balebona, M.C.; Rodriguez-Maroto, J.M.; Borrego, J.J.; Morinigo, M.A. 1998. Chemotaxis of pathogenic vibrio strains towards mucus surfaces of gilt-head sea bream (Sparus aurata L.). Applied and Environmental Microbiology, 64(4): 1573-1575. PMid:9575135.

Buschmann, A.H.; Tomova, A.; Lopez, A.; Maldonado, M.A.; Henriquez, L.A.; Ivanova, L.; Moy, F.; Godfrey, H.P.; Cabello, F.C. 2012. Salmon aquaculture and antimicrobial resistance in the marine environment. PLoS One, 7(8): e42724. http://dx.doi.org/10.1371/journal.pone.0042724. PMid:22905164.

Ceri, H.; Olson, M.E.; Stremick, C.; Read, R.R.; Morck, D.; Buret, A. 1999. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. Journal of Clinical Microbiology, 37(6): 1771-1776. PMid:10325322.

CLSI í  Clinical and Laboratory Standards Institute. CLSI document M07-A10: methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard. 10th ed. Wayne: CLSI; 2015a.

CLSI í  Clinical and Laboratory Standards Institute. 2015b. CLSI document M02-A12: performance standards for antimicrobial disk susceptibility tests: approved standard. 12th ed. Wayne: CLSI.

Cortes, M.E.; Jessika, C.B.; Ruben, D.S. 2011. Biofilm formation, control and novel strategies for eradication. In: Mendez-Vilas, A. (Ed.). Science against microbial pathogens: communicating current research and technological advances. World Scientific Publishing. p. 896-905.

Dash, S.; Das, S.K.; Samal, J.; Thatoi, H.N. 2018. Epidermal mucus, a major determinant in fish health: a review. Iranian Journal of Veterinary Research, 19(2): 72-81. PMid:30046316.

Doi, S.A.; Oliveira, A.J.F.C.; Barbieri, E. 2015. Determinação de coliformes na água e no tecido mole das ostras extraí­­das em Cananéia, São Paulo, Brasil. Engenharia Sanitaria e Ambiental, 20(1): 111-118. http://dx.doi.org/10.1590/S1413-41522015020000125658.

Dussud, C.; Hudec, C.; George, M.; Fabre, P.; Higgs, P.; Bruzaud, S.; Delort, A.M.; Eyheraguibel, B.; Meistertzheim, A.L.; Jacquin, J.; Cheng, J.; Callac, N.; Odobel, C.; Rabouille, S.; Ghiglione, J.F. 2018. Colonization of non-biodegradable and biodegradable plastics by marine microorganisms. Frontiers in Microbiology, 9: 1571. http://dx.doi.org/10.3389/fmicb.2018.01571. PMid:30072962.

Garcia, T.; Otto, K.; Kjelleberg, S.; Nelson, D.R. 1997. Growth of Vibrio anguillarum in salmon intestinal mucus. Applied and Environmental Microbiology, 63(3): 1034-1039. PMid:16535537.

Ghosh, S.; Chaudhuri, A. 1984. Analysis of three whole-arm translocation in a mouse sarcoma cell line. Cytogenetics and Cell Genetics, 38(3): 161-164. http://dx.doi.org/10.1159/000132053. PMid:6488897.

Gómez, G.D.; Balcazar, J.L. 2008. A review on the interactions between gut microbiota and innate immunity of fish. FEMS Immunology and Medical Microbiology, 52(2): 145-154. http://dx.doi.org/10.1111/j.1574-695X.2007.00343.x. PMid:18081845.

Guardiola, F.A.; Dioguardi, M.; Parisi, M.G.; Trapani, M.R.; Meseguer, J.; Cuesta, A.; Cammarata, M.; Esteban, M.A. 2015. Evaluation of waterborne exposure to heavy metals in innate immune defences present on skin mucus of gilthead seabream (Sparus aurata). Fish & Shellfish Immunology, 45(1): 112-123. http://dx.doi.org/10.1016/j.fsi.2015.02.010. PMid:25700783.

Hall-Stoodley, L.; Stoodley, P. 2005. Biofilm formation and dispersal and the transmission of human pathogens. Trends in Microbiology, 13(1): 7-10. http://dx.doi.org/10.1016/j.tim.2004.11.004. PMid:15639625.

Harbarth, S.; Samore, M.H.; Lichtenberg, D.; Carmeli, Y. 2000. Prolonged antibiotic prophylaxis after cardiovascular surgery and its effect on surgical site infections and antimicrobial resistance. Circulation, 101(25): 2916-2921. http://dx.doi.org/10.1161/01.CIR.101.25.2916. PMid:10869263.

Hsu, L.C.; Fang, F.; Borca-Tasciuc, D.A.; Worobo, R.W.; Moraru, C.I. 2013. Effect of micro- and nanoscale topography on the adhesion of bacterial cells to solid surfaces. Applied and Environmental Microbiology, 79(8): 2703-2712. http://dx.doi.org/10.1128/AEM.03436-12. PMid:23416997.

Lee, S.M.; Donaldson, G.P.; Mikulski, Z.; Boyajian, S.; Ley, K.; Mazmanian, S.K. 2013. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature, 501(7467): 426-429. http://dx.doi.org/10.1038/nature12447. PMid:23955152.

Limoli, D.H.; Jones, C.J.; Wozniak, D.J. 2015. Bacterial extracellular polysaccharides in biofilm formation and function. Microbiology Spectrum, 3(3). http://dx.doi.org/10.1128/microbiolspec.MB-0011-2014. PMid:26185074.

Lorite, G.S.; Rodrigues, C.M.; De Souza, A.A.; Kranz, C.; Mizaikoff, B.; Cotta, M.A. 2011. The role of conditioning film formation and surface chemical changes on Xylella fastidiosa adhesion and biofilm evolution. Journal of Colloid and Interface Science, 359(1): 289-295. http://dx.doi.org/10.1016/j.jcis.2011.03.066. PMid:21486669.

Matuschek, E.; Brown, D.F.J.; Kahlmeter, G. 2014. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clinical Microbiology and Infection, 20(4): O255-O266. http://dx.doi.org/10.1111/1469-0691.12373. PMid:24131428.

Matyar, F. 2007. Distribution and antimicrobial multiresistance in Gram-negative bacteria isolated from Turkish sea bass (Dicentrarchus labrax L., 1781) farm. Annals of Microbiology, 57(1): 35-38. http://dx.doi.org/10.1007/BF03175047.

Mií­±ana-Galbis, D.; Farfan, M.; Fuste, M.C.; Loren, J.G. 2007. Aeromonas bivalvium sp. nov., isolated from bivalve molluscs. International Journal of Systematic and Evolutionary Microbiology, 57(3): 582-587. http://dx.doi.org/10.1099/ijs.0.64497-0. PMid:17329789.

Nasopoulou, C.; Karantonis, H.C.; Zabetakis, I. 2011. Nutritional value of gilthead sea bream and sea bass. Dynamic Biochemistry, Process Biotechnology and Molecular Biology, 5(1): 32-40.

Nicolau Korres, A.M.; Aquije, G.M.; Buss, D.S.; Ventura, J.A.; Fernandes, P.M.; Fernandes, A.A. 2013. Comparison of Biofilm and Attachment Mechanisms ofa Phytopathological and Clinical Isolate of Klebsiella pneumoniae Subsp. pneumoniae. TheScientificWorldJournal, 2013: 925375. http://dx.doi.org/10.1155/2013/925375. PMid:24222755.

Okte, E. 2002. Grow-out of sea bream Sparus aurata in turkey particularly in a land-based farm with recirculation system in í­"¡anakkle, better use of water, nutrients and spaces. Turkish Journal of Fisheries and Aquatic Sciences, 2: 83-87.

Otto, M. 2014. Physical stress and bacterial colonization. FEMS Microbiology Reviews, 38(6): 1250-1270. http://dx.doi.org/10.1111/1574-6976.12088. PMid:25212723.

Ovando Fraiha, R.; Pereira, A.P.R.; Brito, E.D.C.A.; Borges, C.L.; Parente, A.F.A.; Perdomo, R.T.; Macedo, M.L.R.; Weber, S.S. 2019. Stress conditions in the host induce persister cells and influence biofilm formation by Staphylococcus epidermidis RP62A. Revista da Sociedade Brasileira de Medicina Tropical, 52: e20180001. http://dx.doi.org/10.1590/0037-8682-0001-2018. PMid:30785531.

Pizarro-Cerdá , J.; Cossart, P. 2006. Bacterial adhesion and entry into host cells. Cell, 124(4): 715-727. http://dx.doi.org/10.1016/j.cell.2006.02.012. PMid:16497583.

Quirynen, M.; Van Der Mei, H.C.; Bollen, C.M.; Schotte, A.; Marechal, M.; Doornbusch, G.I.; Naert, I.; Busscher, H.J.; Van Steenberghe, D. 1993. An in vivo study of the influence of the surface roughness of implants on the microbiology of supra- and subgingival plaque. Journal of Dental Research, 72(9): 1304-1309. http://dx.doi.org/10.1177/00220345930720090801. PMid:8395545.

Scheuerman, T.R.; Camper, A.K.; Hamilton, M.A. 1998. Effects of substratum topography on bacterial adhesion. Journal of Colloid and Interface Science, 208(1): 23-33. http://dx.doi.org/10.1006/jcis.1998.5717. PMid:9820746.

Stewart, P.S.; Costerton, J.W. 2001. Antibiotic resistance of bacteria in biofilms. Lancet, 358(9276): 135-138. http://dx.doi.org/10.1016/S0140-6736(01)05321-1. PMid:11463434.

Tang, H.; Cao, T.; Liang, X.; Wang, A.; Salley, S.O.; McAllister 2nd, J.; Ng, K.Y.S. 2009. Influence of silicone surface roughness and hydrophobicity on adhesion and colonization of Staphylococcus epidermidis. Journal of Biomedical Materials Research. Part A, 88(2): 454-463. http://dx.doi.org/10.1002/jbm.a.31788. PMid:18306290.

Tuomola, E.M.; Ouwehand, A.C.; Salminen, S.J. 1999. The effect of probiotic bacteria on the adhesion of pathogens to human intestinal mucus. FEMS Immunology and Medical Microbiology, 26(2): 137-142. http://dx.doi.org/10.1111/j.1574-695X.1999.tb01381.x. PMid:10536300.

Downloads

Publicado

2019-12-03

Edição

Seção

Nota cientí­­fica (Short Communication)

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 > >>