Evaluation of feeding table optimizations in Pacific white shrimp nursery biofloc systems





Post-larvae, Penaeus vannamei, Feeding management, Biofloc systems


A 45-day experiment was conducted to optimize feeding rates in the nursery phase of Pacific white shrimp reared in biofloc systems (BFT). Four treatments were evaluated in quadruplicate, according to the Van Wyk table: maximum feeding rate; minimum feeding rate; minimum feeding rate minus 10%; and maximum feeding rate plus 10%. Post-larvae (0.08 ± 0.00 g) were cultured at the density of 2,000 shrimp·m-3, and water quality, solids production, and productive performance were all monitored. No significant difference was observed in final mean weight (1.47 ± 0.17 g), productivity (2.34 ± 0.20 kg·m-3) and survival (85.29 ± 5.44%) among treatments, but feed conversion ratio was significantly lower in the minimum feeding rate and minimum feeding rate minus 10% treatments, indicating efficient feed conversion without compromising growth. These treatments also resulted in lower values of toxic nitrogen compounds and total suspended solids, suggesting a positive impact on water quality. Although these rates proved suitable, continuous adjustments are needed owing to variations in the BFT system. This study provides guidelines for optimizing feeding management in superintensive BFT nursery systems.


Almeida, M.S.D.; Gimenes, R.M.T.; Furtado, P.S.; Poersch, L.H.; Wasielesky Jr., W.F.B.; Fóes, G.K.; Mauad, J.R.C. 2022. Economic analysis of intensive and super-intensive Litopenaeus vannamei shrimp production in a Biofloc Technology system. Boletim do Instituto de Pesca, 48:e692. https://doi.org/10.20950/10.20950/1678-2305/bip.2022.48.e692

American Public Health Association (APHA); American Water Works Association (AWWA), Water Environment Federation (WEF). 2005. Standard methods for the examination of water and wastewater. 21st ed. Washington, D.C. APHA.

Audelo-Naranjo, J.M.; Voltolina, D.; Romero-Beltrán, E. 2012. Culture of white shrimp (Litopenaeus vannamei Boone, 1931) with zero water exchange and no food addition: an eco-friendly approach. Latin American Journal of Aquatic Research, 40(2): 441-447. https://doi.org/10.3856/vol40-issue2-fulltext-19

Avnimelech, Y. 1999. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176(3-4): 227-235. https://doi.org/10.1016/S0044-8486(99)00085-X

Avnimelech, Y. 2007. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264(1-4): 140-147. https://doi.org/10.1016/j.aquaculture.2006.11.025

Braga, A.; Magalhães, V.; Hanson, T.; Morris, T.C.; Samocha, T.M. 2016. The effects of feeding commercial feed formulated for semi-intensive systems on Litopenaeus vannamei production and its profitability in a hyperintensive biofloc-dominated system. Aquaculture Reports, 3: 172-177. https://doi.org/10.1016/j.aqrep.2016.03.002

Burford, M.A.; Thompson, P.J.; McIntosh, R.P.; Bauman, R.H.; Pearson, D.C. 2004. The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a highintensity, zero-exchange system. Aquaculture, 232(1-4): 525-537. https://doi.org/10.1016/s0044-8486(03)00541-6

Carvalho, E.A.; Nunes, A.J. 2006. Effects of feeding frequency on feed leaching loss and grow-out patterns of the white shrimp Litopenaeus vannamei fed under a diurnal feeding regime in pond enclosures. Aquaculture, 252(2-4): 494-502. https://doi.org/10.1016/j.aquaculture.2005.07.013

Chen, Y.; Chi, S.; Zhang, S.; Dong, X.; Yang, Q.; Liu, H.; Tan, B.; Xie, S. 2022. Evaluation of Methanotroph (Methylococcus capsulatus, Bath) bacteria meal on body composition, lipid metabolism, protein synthesis and muscle metabolites of Pacific white shrimp (Litopenaeus vannamei). Aquaculture, 547: 737517. https://doi.org/10.1016/j.aquaculture.2021.737517

da Silva, W.A.; de Morais, A.P.M.; do Vale Figueiredo, J.P.; Rafael, R.E.Q.; de Oliveira, C.Y.B.; do Nascimento Vieira, F. 2022. Production of pacific white shrimp in biofloc system with different food management strategies. Boletim do Instituto de Pesca, 48: e707. https://doi.org/10.20950/1678-2305/bip.2022.48.e707

de Schryver, P.; Crab, R.; Defoirdt, T.; Boon, N.; Verstraete, W. 2008. The basics of bio-flocs technology: the added value for aquaculture. Aquaculture, 277(3-4): 125-137. https://doi.org/10.1016/j.aquaculture.2008.02.019

Ebeling, J.M.; Timmons, M.B.; Bisogni, J.J. 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia– nitrogen in aquaculture systems. Aquaculture, 257(1-4): 346-358. https://doi.org/10.1016/j.aquaculture.2006.03.019

El-Sayed, A.F.M. 2021. Use of biofloc technology in shrimp aquaculture: a comprehensive review, with emphasis on the last decade. Reviews in Aquaculture, 13(1): 676-705. https://doi.org/10.1111/raq.12494

Emerenciano, M.; Cuzon, G.; Paredes, A.; Gaxiola, G. 2013. Evaluation of biofloc technology in pink shrimp Farfantepenaeus duorarum culture: growth performance, water quality, microorganisms profile and proximate analysis of biofloc. Aquaculture International, 21(6):1381-1394. https://doi.org/10.1007/s10499-013-9640-y

Emerenciano, M.G.; Miranda-Baeza, A.; Martínez-Porchas, M.; Poli, M.A.; Vieira, F.D.N. 2021. Biofloc technology (BFT) in shrimp farming: past and present shaping the future. Frontiers in Marine Science, 8: 813091. https://doi.org/10.3389/fmars.2021.813091

Food and Agriculture Organization (FAO). 2022. The State of World Fisheries and Aquaculture 2022. Rome: FAO.

Furtado, P.S.; Gaona, C.A.; Poersch, L.H.; Wasielesky, W. 2014. Application of different doses of calcium hydroxide in the farming shrimp Litopenaeus vannamei with the biofloc technology (BFT). Aquaculture International, 22: 1009- 1023. https://doi.org/10.1007/s10499-013-9723-9

Furtado, P.S.; Poersch, L.H.; Wasielesky Jr., W. 2011. Effect of calcium hydroxide, carbonate and sodium bicarbonate on water quality and zootechnical performance of shrimp Litopenaeus vannamei reared in bio-flocs technology (BFT) systems. Aquaculture, 321(1-2): 130-135. https://doi.org/10.1016/j.aquaculture.2011.08.034

Gaona, C.A.P.; da Paz Serra, F.; Furtado, P.S.; Poersch, L.H.; Wasielesky, W. 2016. Effect of different total suspended solids concentrations on the growth performance of Litopenaeus vannamei in a BFT system. Aquacultural Engineering, 72-73: 65-69. https://doi.org/10.1016/j.aquaeng.2016.03.004

Garzade Yta, A.; Rouse, D.B.; Davis, D.A. 2004. Influence of nursery period on the growth and survival of Litopenaeus vannamei under pond production conditions. Journal of the World Aquaculture Society, 35(3): 357-365. https://doi.org/10.1111/j.1749-7345.2004.tb00099.x

Grasshoff, K.; Ehrhardt, M.; Kremling, K. 1983. Methods of seawater analysis. 2nd ed. New York: Verlag Chemie Weinhein.

Jamovi (2023). The jamovi project. Version 2.3 [Computer Software]. Available at: https://www.jamovi.org. Accessed on: May 30, 2024.

Krummenauer, D.; Samocha, T.; Poersch, L.; Lara, G.; Wasielesky Jr., W. 2014. The reuse of water on the culture of Pacific white shrimp, Litopenaeus vannamei, in BFT system. Journal of the World Aquaculture Society, 45(1): 3-14. https://doi.org/10.1111/jwas.12093

Lemos, D.; Coelho, R.; Zwart, S.; Tacon, A.G.J. 2021. Performance and digestibility of inorganic phosphates in diets for juvenile shrimp (Litopenaeus vannamei): dicalcium phosphate, monocalcium phosphate, and monoammonium phosphate. Aquaculture International, 29: 681-695. https://doi.org/10.1007/s10499-021-00651-3

Malavolta, E.; Vitti, G.C.; Oliveira, S.A. 1997. Avaliação do estado nutricional das plantas: princípios e aplicações. 2nd ed. Piracicaba: Potafos.

Martins, M.A.; Mouriño, J.L.P.; Seiffert, W.Q.; do Nascimento Vieira, F. 2022. Predictive functional profiling of water bacterial community in the integrated culture of Pacific white shrimp and Nile tilapia under heterotrophic and mature biofloc systems. Aquaculture Research, 53(15): 5428-5433. https://doi.org/10.1111/are.16000

Naylor, R.L.; Hardy, R.W.; Bureau, D.P.; Chiu, A.; Elliott, M.; Farrell, A.P.; Forster, I.; Gatlin, D.M.; Goldburg, R.J.; Hua, K.; Nichols, P.D. 2009. Feeding aquaculture in an era of finite resources. Proceedings of the National Academy of Sciences of the United States of America, 106(36): 15103-15110. https://doi.org/10.1073/pnas.0905235106

Nunes, A.J.P.; Parsons, G.J. 2006. A computer-based statistical model of the food and feeding patterns of the Southern brown shrimp Farfantepenaeus subtilis under culture conditions. Aquaculture, 252(2-4): 534-544. https://doi.org/10.1016/j.aquaculture.2005.07.020

Quintero, H.E.; Roy, L.A. 2010. Practical feed management in semi-intensive systems for shrimp culture. In: Alday-Sanz, V. (ed.). The shrimp book. St. Louis: U.S. Soybean Export Council. p. 443-453.

Ray, A.J.; Lewis, B.L.; Browdy, C.L.; Leffler, J.W. 2010. Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant-based feed in minimal-exchange, superintensive culture systems. Aquaculture, 299(1-4): 89-98. https://doi.org/10.1016/j.aquaculture.2009.11.021

Rego, M.A.S.; Sabbag, O.J.; Soares, R.; Peixoto, S. 2017. Risk analysis of the insertion of biofloc technology in a marine shrimp Litopenaeus vannamei production in a farm in Pernambuco, Brazil: A case study. Aquaculture, 469: 67-71. https://doi.org/10.1016/j.aquaculture.2016.12.006

Said, M.M.; El-Barbary, Y.A.; Ahmed, O.M. 2022. Assessment of performance, microbial community, bacterial food quality, and gene expression of whiteleg shrimp (Litopenaeus vannamei) reared under different density biofloc systems. Aquaculture Nutrition, 3499061. https://doi.org/10.1155/2022/3499061

Samocha, T.M.; Patnaik, S.; Speed, M.; Ali, A.M.; Burger, J.M.; Almeida, R.V.; Ayub, Z.; Harisanto, M.; Horowitz, A.; Brock, D.L. 2007. Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacultural Engineering, 36(2):184-191. https://doi.org/10.1016/j.aquaeng.2006.10.004

Schveitzer, R.; Arantes, R.; Costódio, P.F.S.; do Espírito Santo, C.M.; Arana, L.V.; Seiffert, W.Q.; Andreatta, E.R. 2013. Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquacultural Engineering, 56: 59-70. https://doi.org/10.1016/j.aquaeng.2013.04.006

Serra, F.P.; Gaona, C.A.; Furtado, P.S.; Poersch, L.H.; Wasielesky, W. 2015. Use of different carbon sources for the biofloc system adopted during the nursery and grow-out culture of Litopenaeus vannamei. Aquaculture International, 23: 1325-1339. https://doi.org/10.1007/s10499-015-9887-6

Strickland, J.D.H.; Parsons, T.R. 1972. A practical handbook of seawater analysis. 2nd ed. Ottawa: Fisheries Research Board of Canada.

Van Wyk, P. 1999. Nutrition and feeding of Litopenaeus vannamei in intensive culture systems. In: Van Wyk, P.; Davis-Hodgkins, M.; Laramore, R.; Main, K.L.; Mountain, J.; Scarpa, J. (eds.). Farming marine shrimp in recirculating freshwater systems. Fort Pierce: Harbor Branch Oceanographic Institute. p. 125-139.

Van Wyk, P.; Scarpa, J. 1999. Water quality requirements and management. In: Van Wyk, P.; Davis-Hodgkins, M.; Laramore, R.; Main, K.L.; Mountain, J.; Scarpa, J. (eds.). Farming marine shrimp in recirculating freshwater systems. Fort Pierce: Harbor Branch Oceanographic Institute. p. 141-161.

Wasielesky Jr., W.; Atwood, H.; Stokes, A.; Browdy, C.L. 2006. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, 258(1-4): 396-403. https://doi.org/10.1016/j.aquaculture.2006.04.030

Xu, W.; Xu, Y.; Su, H.; Hu, X.; Xu, Y.; Li, Z.; Wen, G.; Cao, Y. 2020. Effects of feeding frequency on growth, feed utilization, digestive enzyme activity and body composition of Litopenaeus vannamei in biofloc-based zero-exchange intensive systems. Aquaculture, 522: 735079. https://doi.org/10.1016/j.aquaculture.2020.735079

Zheng, Z.H.; Dong, S.L.; Tian, X.L. 2008. Effects of intermittent feeding of different diets on growth of Litopenaeus vannamei. Journal of Crustacean Biology, 28(1): 21-26. https://doi.org/10.1651/07-2858R.1






Scientific Article

Most read articles by the same author(s)

1 2 > >>