Suplementação de prebióticos, probióticos e algas marinhas na dieta de tilápia juvenil

Autores

DOI:

https://doi.org/10.20950/1678-2305/bip.2024.50.e819

Palavras-chave:

Immunostimulants, Symbiotics, Nutrition, Hematology, Aeromonas hydrophila, Aquaculture

Resumo

O objetivo  foi avaliar o uso de probióticos, mananoligossacarídeos (MOS) e algas marinhas na alimentação de tilápia do Nilo (Oreochromis niloticus), analisando-se a taxa de crescimento, os parâmetros hematológicos e imunológicos e a microbiota intestinal. Além disso,  foram submetidos à infecção com Aeromonas hydrophila para avaliar a resposta imune. Tilápia do Nilo (peso 8,86 ± 3,22 g) foram utilizados nos seis tratamentos com quatro repetições, durante 63 dias. Os tratamentos foram: dieta basal; PAS-TR: dieta basal mais 0,04 g·kg-1 do probiótico (Bacillus cereus e Bacillus subtilis); MOS: dieta basal acrescida de 4,0 g·kg-1 do prebiótico manooligossacarídeo, 4,0 g·kg-1 do prebiótico Kappaphycus alvarezii. Duas dietas foram formuladas com PAS-TR + MOS (4,0 +4,0 g·kg-1) e PAS-TR + KAP (4,0 +4,0 g·kg-1). Para o desafio,  foram alimentados por 21 dias, infectados via injeção intraperitoneal com A. hydrophila (1 x 106 UFC mL-1), e a taxa de mortalidade registrada por 15 dias pós-infecção. Os resultados indicaram a capacidade do probiótico permanecer no intestino por 63 dias, e não foi inibido pela microbiota autóctone nem pelos prebióticos. Os aditivos alimentares testados não causaram efeito benéfico ou adverso no crescimento ou nas variáveis hematológicas avaliadas. Mas os tratamentos protegeram os peixes da infecção por A. hydrophyla. Concluímos que o probiótico PAS-TR e os prebióticos MOS e KAP, combinados ou não como simbióticos, podem promover proteção imunológica e reduzir a taxa de mortalidade da infecção por A. hydrophyla.

Referências

Abu-Elala, N.; Marzouk, M.; Moustafa, M. 2013. Use of different Saccharomyces cerevisiae biotic forms as immunemodulator and growth promoter for Oreochromis niloticus challenged with some fish pathogens. International Journal of Veterinary Science and Medicine, 1(1): 21–29. https://doi.org/10.1016/j.ijvsm.2013.05.001

Akhter, N.; Wu, B.; Memon, A.M.; Mohsin, M. 2015. Probiotics and prebiotics associated with aquaculture: A review. Fish Shellfish Immunology, 45(2): 733-741. https://doi.org/10.1016/j.fsi.2015.05.038

Aljanabi, S.M.; Martinez, I. 1997. Universal and rapid saltextraction of high-quality genomic DNA for PCR-based techniques. Nucleic Acids Research, 25(22): 4692-4693. https://doi.org/10.1093/nar/25.22.4692

Aly, S.M.; Ahmed, Y.A.G.; Aziz, A.A.G.; Mohamed, M.F. 2008a. Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish & Shellfish Immunology, 25(1-2): 128-136. https://doi.org/10.1016/j.fsi.2008.03.013

Aly, S.M.; Ahmed, Y.A.G.; Ghareeb, A.A.A.; Mohamed, M.M. 2008b. Studies on Bacillus subtilis and Lactobacillus acidophilus, as potencial probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish and Shellfish Immunology, 25(1-2): 128-136. https://doi.org/10.1016/j.fsi.2008.03.013

Amenyogbe, E.; Chen, G.; Wang, Z.; Huang, J.S.; Huang, B.; Li, H. 2020. The exploitation of probiotics, prebiotics and synbiotics in aquaculture: present study, limitations and future directions: a review. Aquaculture International, 28: 1017–1041. https://doi.org/10.1007/s10499-020-00509-0

Belo, M.A.A.; Moraes, F.R.; Yoshida, L.; Prado, E.J.R.; Moraes, J.R.E.; Soares, V.E.; Silva, M.G. 2014. Deleterious effects of low level of vitamin E and high stocking density on the hematology response of pacus, during chronic inflammatory reaction. Aquaculture, 422-423: 124-128. https://doi.org/10.1016/j.aquaculture.2013.12.013

Bernard, V.H.; Nurhidayu, A.; INA-Salwany, M.Y.; Abdelhadi, Y. 2013. Bacillus cereus; JAQ04 strain as a potential probiotic for red tilapia; Oreochromis Species. Asian Journal of Animal and Veterinary Advances, 8(2): 395-400. https://doi.org/10.3923/ajava.2013.395.400

Carnevali, O.; Maradonna, F.; Gioacchini, G. 2017. Integrated control of fish metabolism, wellbeing and reproduction: The role of probiotic. Aquaculture, 472: 144-155. https://doi.org/10.1016/j.aquaculture.2016.03.037

Castro, M.P.; Claudiano, G.S.; Petrillo, T.R.; Shimada, M.T.; Belo, M.A., Marzocchi-Machado, C.M.; Moraes, J.R.; Manrique, G.W.; Moraes, F.R. 2014. Acute aerocystitis in Nile tilapia bred in net cages and supplemented with chromium carbochelate and Saccharomyces cerevisiae. Fish and Shellfish Immunology, 36(1): 284-290. https://doi.org/10.1016/j.fsi.2013.11.012

Cavalcante, R.B.; Telli, G.S.; Tachibana, L.; Dias, D.C.; Oshiro, E.; Natori, M.M.; Silva, W.F. da; Ranzani-Paiva, M.J. 2020. Probiotics, Prebiotics and Synbiotics for Nile tilapia: Growth performance and protection against Aeromonas hydrophila infection. Aquaculture Reports, 17: 100343. https://doi.org/10.1016/j.aqrep.2020.100343

Cole, A.M.; Liao, H.I.; Stuchlik, O. 2002. Cationic polypeptides are required for antibacterial activity of human airway fluid. Journal of Immunology, 169(12): 6985-6991. https://doi.org/10.4049/jimmunol.169.12.6985

Cruz, P.M.; Ibáñez, A.L.; Hermosillo, O.A.; Saad, H.C. 2012. Use of probiotics in aquaculture. ISRN Microbiology, 2012: 916845. https://doi.org/10.5402/2012/916845

Culjak, V.; Bogut, I.; Has-Schön, E.; Milakovic, Z.; Canecki, K. 2004. Influence of mananoligosaccharides supplementation on juvenile carp (Cyprinus carpio) in cage farming. Krmiva, 46(1): 25-29.

Das, S.; Ward, L.R.; Burke, C. 2008. Prospects of using marine actinobacteria as probiotics in aquaculture. Applied Microbiology and Biotechnology, 81: 419-429. https://doi.org/10.1007/s00253-008-1731-8

De Rodriganez, M.S.; Diaz-Rosales, P.; Chabrillon, M.; Balebona, M.C.; Smidt, H.; Arijo, S.; León-Rubio, J.M.; Alarcón, F.J.; Moriñigo, M.A.; Cara, J.B.; Moyano, F.J. 2009. Effect of dietary administration of probiotics on growth and intestine functionality of juvenile Senegalese sole (Solea senegalensis, Kaup 1858). Aquaculture Nutrition, 15(2): 177-185. https://doi.org/10.1111/j.1365-2095.2008.00581.x

Dias, D.C.; Leonardo, A.F.G.; Tachibana, L.; Correa, C.F.; Bordon, I.C.A.C.; Romagosa, E.; Ranzani-Paiva, M.J.T. 2012. Effect of incorporating probiotics into the diet of matrinxã (Brycon amazonicus) breeders. Journal of Applied Ichthyology, 28(1): 40-45. https://doi.org/10.1111/j.1439-0426.2011.01892.x

Dias, J.A.R.; Abe, H.A.; Sousa, N.C.; Couto, M.V.S.; Cordeiro, C.A.M.; Meneses, J.O.; Cunha, F.S.; Mouriño, J.L.P.; Martins, M.L.; Barbas, L.A.L.; Carneiro, P.C.F.; Maria, A.N.; Fujimoto, R.Y. 2018. Dietary supplementation with autochthonous Bacillus cereus improves growth performance and survival in tambaqui Colossoma macropomum. Aquaculture Research, 49(9): 3063–3070. https://doi.org/10.1111/are.13767

Doan, H.V.; Hoseinifar, S.H.; Dawood, M.A.O.; Chitmanat, C.; Tayyamath, K. 2017. Effects of Cordyceps militaris spent mushroom substrate and Lactobacillus plantarum on mucosal, serum immunology and growth performance of Nile tilapia (Oreochromis niloticus). Fish & Shellfish Immunology, 70: 87–94. https://doi.org/10.1016/j.fsi.2017.09.002

Doan, V.H.; Hoseinifar, S.H.; Tapingkae, W.; Tongsiri, S.; Khamtavee, P. 2016. Combined administration of low molecular weight sodium alginate boosted immunomodulatory, disease resistance and growth enhancing effects of Lactobacillus plantarum in Nile tilapia (Oreochromis niloticus). Fish & Shellfish Immunology, 58: 678-685. https://doi.org/10.1016/j.fsi.2016.10.013

Doggett, T.A.; Harris, J.E. 1989. Ultrastructure of the peripheral blood leucocytes of Oreochromis mossambicus. Journal of Fish Biology, 34(5): 747-756. https://doi.org/10.1111/j.1095-8649.1989.tb03354.x

Doty, M.S. 1987. The Production and Use of Eucheuma. In: Doty, M.S.; Caddy, J. F.; Santelices, B. (eds.). Case Studies of Seven Commercial Seaweed Resources. Rome: FAO Fisheries Technical Papers, 281. p. 123-161.

El-Haroun, E.R.; Goda, A.M.A.S.; Chowdhury, A.K. 2006. Effect of dietary probiotic Biogen® supplementation as a growth promoter on growth performance and feed utilization of Nile tilapia Oreochromis niloticus (L.). Aquaculture Research, 37(14): 1473-1480. https://doi.org/10.1111/j.1365-2109.2006.01584.x

Engelman, M.F.B.; Guidugli, J.N.; Andrade, C.H.V.; Hernandez, R.; Goulart, L.B.N.T. 2000. Estudo morfométrico do fígado de ratos submetidos a doses supra-fisiológicas de tiroxina. Arquivo Brasileiro de Endocrinologia, 45(2): 173-179.https://doi.org/10.1590/S0004-27302001000200009

Fuentes-Quesada, J.P.; Cornejo-Granados, F.; Mata-Sotres, J.A.; Ochoa-Romo, J.P.; Rombenso, A.N.; Guerrero-Rentería, Y.; Lazo, J.P.; Pohlenz, C.; Ochoa-Leyva, A.; Viana, M.T. 2020. Prebiotic agavin in juvenile totoaba, Totoaba macdonaldi diets, to relieve soybean meal-induced enteritis: Growth performance, gut histology and microbiota. Aquaculture Nutrition, 26(6): 2115-2134. https://doi.org/10.1111/anu.13151

Ganguly, S.; Dora, K.C.; Sarkar, S.; Chowdhury, S. 2013. Supplementation of prebiotics in fish feed: a review. Reviews in Fish Biology and Fisheries, 23: 195-199.https://doi.org/10.1007/s11160-012-9291-5

Geng, X.; Dong, X.H.; Tan, B.P.; Yang, Q.H.; Chi, S.Y.; Liu, H.Y.; Liu, X.Q. 2012. Effects of dietary chitosan and Bacillus subtilis on the growth performance, non-specific immunity and disease resistance of cobia, Rachycentron canadum. Fish and Shellfish Immunology, 31(3): 400-406. https://doi.org/10.1016/j.fsi.2011.06.006

Giatsis, C.; Sipkema, D.; Ramiro-Garcia, J.; Bacanu, G.M.; Abernathy, J.; Verreth, J.; Smidt, H.; Verdegem, M. 2016. Probiotic legacy effects on gut microbial assembly in tilapia larvae. Scientific Reports, 6: 33965. https://doi.org/10.1038/srep33965

Gioacchini, G.; Giorgini, E.; Olivotto, I.; Maradonna, F.; Merrifield, D.L.; Carnevali, O. 2014. The influence of probiotics on zebrafish Danio Rerio innate immunity and hepatic stress. Zebrafish, 11(2): 98-106. https://doi.org/10.1089/zeb.2013.0932

Hoseinifar, S.H.; Ringø, E.; Masouleh, A.S.; Esteban, M.A. 2016. Probiotic, prebiotic and synbiotic supplements in sturgeon aquaculture: a review. Review in Aquaculture, 8(1): 89-102. https://doi.org/10.1111/raq.12082

Hrubec, T.C.; Smith, S.A. 1998. Hematology of fish. In: Feldman, B.F.; Zinkl, J.G.; Jain, N.C. (eds.). Schalm’s Veterinary Hematology. 5th ed. Blackburg: Wiley-Blackwell. p. 1120-1125.

Hrubec, T.C.; Smith, S.A. 2010. Hematology of fish. In: Weiss, D.Z.; Wardrop, J. (Eds.). Schalm’s Veterinary Hematology. 5th ed. Blackburg: Wiley-Blackwell. p. 994-1003.

Irianto, A.; Austin, B. 2002. Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Fish Diseases, 25(6): 333-342. https://doi.org/10.1046/j.1365-2761.2002.00375.x

Jatobá, A.; Vieira, F.N.; Buglione, C.; Silva, B.C.; Mouriño, J.L.P.; Silva, B.C.; Seiftter, W.Q.; Andreatta, E.R. 2011. Diet supplemented with probiotic for Nile tilapia in polyculture system with marine shrimp. Fish Physiology and Biochemistry, 37: 725-732. https://link.springer.com/article/10.1007/s10695-011-9472-5

Kautsky, N.; Ronnback, P.; Tedengren, M.; Troell, M. 2000. Ecosystem perspectives on management of disease in shrimp pond farming. Aquaculture, 191(1-3): 145-161. https://doi.org/10.1016/S0044-8486(00)00424-5

Kim, D.H.; Austin, B. 2006. Innate immune responses in rainbow trout Oncorhynchus mykiss, Walbaum, induced by probiotics. Fish and Shellfish Immunology, 21(5): 513-524. https://doi.org/10.1016/j.fsi.2006.02.007

Li, Y.; Wang, W.; Yang, F.; Xu, Y.; Feng, C.; Zhao, Y. 2019. The regulatory roles of neutrophils in adaptive immunity. Cell Communication and Signaling, 17: 147. https://doi.org/10.1186/s12964-019-0471-y

Lin, Y.S.; Saputrab, F.; Chen, Y.O.; Hu, S.Y. 2019. Dietary administration of Bacillus amyloliquefaciens R8 reduces hepatic oxidative stress and enhances nutrient metabolism and immunity against Aeromonas hydrophila and Streptococcus agalactiae in zebrafish (Danio rerio). Fish and Shellfish Immunology, 86: 410-419. https://doi.org/10.1016/j.fsi.2018.11.047

Lopera, D.; Aristizabal, B.H.; Restrepo, A.; Cano, L.E.; Gonzáles, A. 2008. Lysozyme plays a dual role against the dimorphic fungus Paracoccidioides brasiliensis. Revista do Instituto de Medicina Tropical de São Paulo, 50(3): 169-175. https://doi.org/10.1590/S0036-46652008000300008

Marengoni, N.G.; de Moura, M.C.; de Oliveira, N.T.E.; Bombardelli, R.A.; Albuquerque, D.M. 2015. Use of probiotics Bacillus cereus var. toyoi and Bacillus subtilis C-3102 in the diet of juvenile Nile tilapia cultured in cages. Latin American Journal of Aquatic Research, 43(3): 601-606. https://doi.org/10.3856/vol43-issue3-fulltext-23

Mehrim, A. 2009. Effect of dietary supplementation of Biogen® (commercial probiotic) on mono-sex Nile tilapia Oreochromis niloticus under different stocking densities. Journal of Fisheries and Aquatic Sciences, 4(6): 261-273. https://doi.org/10.3923/jfas.2009.261.273

Merrifield, D.L.; Dimitroglou, A.; Bradley, G.; Baker, R.T.M.; Davies, S.J. 2010a. Probiotic applications for rainbow trout (Oncorhynchus mykiss Walbaum). Effects on growth performance, feed utilization, intestinal microbiota and related health criteria. Aquaculture. Nutrition, 16(5): 504-510. https://doi.org/10.1111/j.1365-2095.2009.00689.x

Merrifield, D.L.; Dimitroglou, A.; Foey, A.; Davies, S.J.; Baker, R.; Bogwald, J.; Castex, M.; Ringo, E. 2010b. The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture, 302(1-2): 1-18. https://doi.org/10.1016/j.aquaculture.2010.02.007

Miranda, C.D.; Godoy, F.A.; Lee, M.R. 2018. Current status of the use of antibiotics and the antimicrobial resistance in the chilean salmon farms. Frontiers in Microbiology, 9: 1284. https://doi.org/10.3389/fmicb.2018.01284

Mugwanya, M.; Mahmoud A.O.; Dawood, M.A.O.; Kimera, F.; Sewilam, H. 2022. Updating the role of probiotics, prebiotics, and synbiotics for tilapia aquaculture as leading candidates for food sustainability: a Review. Probiotics and Antimicrobial Proteins, 14(1): 130-157. https://doi.org/10.1007/s12602-021-09852-x

Muyzer, G.; Waal, E.C.; Uitterlinden, A.G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59(3): 695-700. https://doi.org/10.1128%2Faem.59.3.695-700.1993

Nagarani, N.; Kumaraguru, A.K. 2012. Chemical characterization, temperature stability and enzymatic studies on edible marinealgae Kappaphycus alvarezii (Doty). Journal of Aquatic Food Product Technology, 21(5): 480-492. https://doi.org/10.1080/10498850.2011.610117

Newaj-Fyzul, A.; Austin, B. 2015. Probiotics, immunostimulants, plant products and oral vaccines, and their role as feed supplements in the control of bacterial fish diseases. Journal of Fish Diseases, 38(11): 937-955. https://doi.org/10.1111/jfd.12313

Newman, S.G.; Majnarich, J.J. 1982. Direct immersion vaccination of juveniles rainbow trout, Salmo gairdneri Richardson, and juvenile coho salmon, Oncorhynchus kisutch (Walbaum), with a Yersinia ruckeri bacterin. Journal of Fish Disease, 5(4): 339-341

Nguyen, T.L.; Park, C.-IL.; Kim, D-H. 2017. Improved growth rate and disease resistance in olive flounder, Paralichthys olivaceus, by probiotic Lactococcus lactis WFLU12 isolated from wild marine fish. Aquaculture, 471: 113-120. https://www.sciencedirect.com/science/article/abs/pii/S0044848617300479?via%3Dihub

Paniagua, S.T.T.; Rosales, P.D.; Banda, I.G.; Lobo, C.; Clavijo, E.; Balebona, M.C.; Moriñigo, M.A. 2014. Modulation of certain liver fatty acids in Solea senegalensis is influenced by the dietary administration of probiotic microorganisms. Aquaculture, 424-425: 234-238. https://doi.org/10.1016/j.aquaculture.2014.01.003

Prabha, V.; Prakash, D.J.; Sudha, P.N. 2013. Analysis of bioactive compounds an antimicrobial activity of marine algae Kappaphycus alvarezii. International Journal of Pharmaceutical and Sciences Research, 4(1): 306-310.

Rahman, S.M.; Alsaqufi, A.S.; Kundu, P.; Mansour, A.T.; AAlkhamis, Y.; Mathew, R.T.; Ali, M.Y.; Sunuram Ray, S.; Sarower, M.G. 2022. Effect of dietary supplementation of synbiotics “Power Lac®” on growth performance, phenotypic traits and digestive enzyme activities of monosex Nile tilapia, Oreochromis niloticus. Fresenius Environmental Bulletin, 31(01A/2022): 1521-1530.

Raida, M.K.; Larsen, J.L.; Nielsen, M.E.; Buchmann, K. 2003. Enhanced resistance of rainbow trout, Oncorhynchus mykiss (Walbaum), against Yersinia ruckeri challenge following oral administration of Bacillus subtilis and B. licheniformis (BioPlus2B). Journal of Fish Disease, 26(8): 495-498. https://doi.org/10.1046/j.1365-2761.2003.00480.x

Rajasulochana, P.; Dhamotharan, R.; Krishnamoorthy, P. 2009. Primary phytochemical analysis of Kappaphycus sp. Journal of American Science, 5(2): 91-96.

Ranzani-Paiva, M.J.T.; Pádua, S.B.; Tavares-Dias, M. 2023. Methods for hematological analysis in fish. São Paulo. Ridha, M.T.; Azad, I.S. 2016. Effect of autochthonous and commercial probiotic bacteria on growth, persistence, immunity and disease resistance in juvenile and adult Nile tilapia Oreochromis niloticus. Aquaculture Research, 47(9), 2757-2767. https://doi.org/10.1111/are.12726

Romero, J.; Gloria, C.; Navarrete, P. 2012. Antibiotics in Aquaculture: Use, Abuse and Alternatives, in: Health and Environment in Aquaculture. InTech. Salinas, I.; Cuesta, A.; Esteban, M.A.; Meseguer, J. 2005. Dietary administration of Lactobacillus delbrüeckii and Bacillus subtilis, single or combined, on gilthead seabream cellular innate immune responses. Fish & Shellfish Immunology, 19(1): 67-77. https://doi.org/10.1016/j.fsi.2004.11.007

Sanguinetti, C.J.; Dias Neto, E.; Simpson, A.J. 1994. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques, 17(5): 914-921.

Shapawi, R.; Safiin, N.S.Z.; Senoo, S. 2015. Improving dietary red seaweed Kappaphycus alvarezii (Doty) Doty ex. P. Silva meal utilization in Asian seabass Lates calcarifer. Journal of Applied Phycology, 27: 1681-1688. https://doi.org/10.1007/s10811-014-0454-8

Tachibana, L.; Telli, G.S.; Dias, D.C.; Gonçalves, G.S.; Ishikawa, C.M.; Cavalcante, R.B.; Natori, M.M.; Ben Hamed, S.; Ranzani-Paiva, M.J.T. 2020. Effect of feeding strategy of probiotic Enterococcus faecium on growth performance, hematologic, biochemical parameters and non-specific immune response of Nile tilapia. Aquaculture Reports, 16: 100277. https://doi.org/10.1016/j.aqrep.2020.100277

Tapia-Paniagua, S.T.; Chabrillón, M.; Díaz-Rosales, P.; de la Banda, I.G.; Lobo, C.; Balebona, M.C.; Moriñigo, M.A. 2010. Instestinal microbiota diversity of the flat fish Solea senegalenses (Kaup, 1858) following probiotic administration. Microbial Ecology, 60: 310-319. https://doi.org/10.1007/s00248-010-9680-z

Tavares-Dias, M.; Oliveira, S.R. 2009. A review of the blood coagulation system of fish. Brazilian Journal of Biosciences, 7(2): 205-224.

Telli, G.S.; Ranzani-Paiva, M.J.T.; Dias, D.C.; Sussel, F.R.; Ishikawa, C.M.; Tachibana, L. 2014. Dietary administration of Bacillus subtilis on hematology and non-specific immunity of Nile tilapia Oreochromis niloticus raised at different stocking densities. Fish & Shellfish Immunology, 39(2): 305-311. https://doi.org/10.1016/j.fsi.2014.05.025

Thomas, J.S. 2000. Overview of plasma proteins. In: Feldman, B. F. (ed.). Schalm’s veterinary hematology. Philadelphia: Lippincott. p. 891-898.

Urbinati, E.C.; Carneiro, P.C.F. 2001. Metabolic and hormonal responses of matrinxã, Brycon cephalus, (Teleost: Characidae) to transport stress under influence of benzocaine. Journal of Aquaculture in the Tropics, 16(1): 75-85.

Verschuere, L.; Rombaut, G.; Sorgeloos, P.; Verstraete, W. 2000. Probiotic bacteria as biological control agents in aquaculture. Microbiology and Molecular Biology Review, 64(4): 655–671. https://doi.org/10.1128/mmbr.64.4.655-671.2000

Wang, Y.; Tian, Z.; Yao, J.; Li, W. 2008. Effect of probiotics, Enterococcus faecium, on tilapia (Oreochromis niloticus) growth performance and immune response. Aquaculture, 277(3-4): 203-207. https://doi.org/10.1016/j.aquaculture.2008.03.007

Wanka, K.M.; Damerau, T.; Costas, B.; Krueger, A.; Schulz, C.; Wuertz, S. 2018. Isolation and characterization of native probiotics for fish farming. BMC Microbiology, 18: 119. https://doi.org/10.1186/s12866-018-1260-2

Whyte, S.K. 2007. The innate immune response of finfish — a review of current knowledge. Fish and Shellfish Immunology, 23(6): 1127-1151. https://doi.org/10.1016/j.fsi.2007.06.005

Downloads

Publicado

2024-04-24

Edição

Seção

Artigo cientí­fico

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 > >>