Digestibilidade da proteína e energia de farinhas de insetos para acará-bandeira (Pterophyllum scalare)
DOI:
https://doi.org/10.20950/1678-2305/bip.2026.52.e973Palavras-chave:
Alimento alternativo, Coeficiente de digestibilidade, Farinha de peixe, Grilo, Nutrição de peixes, Peixes ornamentaisResumo
As farinhas de insetos têm sido objeto de inúmeros estudos nos últimos anos, e seu potencial na alimentação animal também tem sido investigado. Este estudo teve como objetivo investigar os coeficientes de digestibilidade de proteína, matéria seca e energia de farinhas de insetos: mosca soldado-negro (Hermetia illucens), grilo (Gryllus spp.), ninfa-do-grilo e tenébrio (Tenebrio molitor) para acará-bandeira (Pterophyllum scalare). Um total de 225 adultos de P. scalare, pesando 30 ± 2,32 g cada um, foi alojado em 15 tanques circulares de fibra de 200 L com densidade de 15 peixes por unidade experimental em triplicata. A digestibilidade foi estimada pelo método indireto, utilizando óxido de cromo como indicador inerte. Para coleta de fezes, foi utilizado o sistema Guelph modificado. Entre as farinhas de insetos testadas, a farinha de mosca soldado-negro apresentou coeficiente de digestibilidade superior para matéria seca (0,77), proteína (0,901) e energia (0,82). A farinha de tenébrio apresentou coeficiente de digestibilidade inferior (matéria seca = 0,67, proteína = 0,88 e energia = 0,77). O grilo (farinhas de adultos e ninfa) apresentou valores semelhantes de coeficiente de digestibilidade de matéria seca e energia. Esses resultados indicaram que as farinhas de insetos investigadas neste estudo são alternativas adequadas como alimento para acará-bandeira.
Referências
Association of Official Analytical Chemists (AOAC) (2019). Official methods of analysis (21st ed.). Association of Official Analysis Chemistry.
Barrows, F. T., Bellis, D., Krogdahl, A., Silverstein, J. T., Herman, E. M., Sealy, W. M., Rust, M. B., & Gatlin III, D. M. (2008). Report of plant products in aquafeeds strategic planning workshop: an integrated interdisciplinary roadmap for increasing utilization of plant feedstuffs in diets for carnivorous fish. Reviews in Fisheries Science, 16(4), 449-455. https://doi.org/10.1080/10641260802046734
Basto, A. (2021). The use of defatted Tenebrio molitor larvae meal as a main protein source is supported in european sea bass (Dicentrarchus labrax) by data on growth performance, lipid metabolism, and flesh quality. Frontiers in Physiology, 12, 659567. https://doi.org/10.3389/fphys.2021.659567
Basto, A., Matos, E., & Valente, L. M. P. (2020). Nutritional value of different insect larvae meals as protein sources for European sea bass (Dicentrarchus labrax) juveniles. Aquaculture, 521, 735085. https://doi.org/10.1016/j.aquaculture.2020.735085
Belforti, M., Gai, F., Lussiana, C., Renna, M., Malfatto, V., Rotolo, L., Dabbou, S., Schiavone, A., Zoccarato, I., & Gasco, L. (2015). Tenebrio Molitor meal in rainbow trout (Oncorhynchus Mykiss) diets: effects on animal performance, nutrient digestibility and chemical composition of fillets. Italian Journal Animal Science, 14(4), 4170. https://doi.org/10.4081/ijas.2015.4170
Belghit, I., Liland, N. S., Gjesdal, P., Biancarosa, I., Menchetti, E., Li, Y., Waagbo, R., Krogdahl, A., & Lock, E. J. (2019). Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture, 503, 609-619. https://doi.org/10.1016/j.aquaculture.2018.12.032
Bulbul, M., Koshio, S., Ishikawa, M., Yokoyama, S., & Kader, A. (2013). Performance of kuruma shrimp, Marsupenaeus japonicus fed diets replacing fishmeal with a combination of plant protein meals. Aquaculture, 372-375, 45-51. https://doi.org/10.1016/j.aquaculture.2012.10.023
Corrêa, C. F., Aguiar, L. H., Lundstedt, L. M., & Moraes, G. (2007). Responses of digestive enzymes of tambaqui (Colossoma macropomum) to dietary cornstarch changes and metabolic inferences. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 147(4), 857-862. https://doi.org/10.1016/j.cbpa.2006.12.045
Daniel, N. (2018). A review on replacing fish meal in aqua feeds using plant protein sources. International Journal of Fisheries and Aquatic Studies, 6, 164-179. Available at https://www.researchgate.net/profile/Daniel-Dani/publication/324006059_A_review_on_replacing_fish_meal_i n _ a q u a _ f e e d s _ u s i n g _ p l a n t _ p r o t e i n _ s o u r c e s/links/5ab873c00f7e9b68ef51b608/A-review-on-replacingfish-meal-in-aqua-feeds-using-plant-protein-sources.pdf
Dietz, C., & Liebert, F. (2018). Does graded substitution of soy protein concentrate by an insect meal respond on growth and N-utilization in Nile tilapia (Oreochromis niloticus)? Aquaculture Reports, 12, 43-48. https://doi.org/10.1016/j.aqrep.2018.09.001
Ding, Z., Zhang, Y., Ye, J., Du, Z., & Kong, Y. (2015). An evaluation of replacing fish meal with fermented soybean meal in the diet of Macrobrachium nipponense: Growth, nonspecific immunity, and resistance to Aeromonas hydrophila. Fish Shellfish Immunology, 44(1), 295-301. https://doi.org/10.1016/j.fsi.2015.02.024
Finke, M. D. (2002). Complete nutrient composition of commercially raise invertebrates used as food for insectivores. Zoo Biology, 21(3), 269-285. https://doi.org/10.1002/zoo.10031
Finke, M. D. (2007). Estimate of chitin in raw whole insects. Zoo Biology, 26(2), 105-115. https://doi.org/10.1002/zoo.20123
Fontes, T. V., Oliveira, K. R. B., Gomes Almeida, I. L., Orlando, T. M., Rodrigues, P. B., Costa, D. V., & Rosa, P. V. E. (2019). Digestibility of insect meals for Nile tilapiafingerlings. Animals, 9(4), 181. https://doi.org/10.3390/ani9040181
Food and Agriculture Organization (FAO) (2022). World fisheries and aquaculture. FAO. Available at https://www.fao.org/publications/fao-flagship-publications/the-state-of-world-fisheries-and-aquaculture/en
Forster, I. A. (1999). A note on the method of calculating digestibility coefficients of nutrients provided by single ingredients to feeds of aquatic animals. Aquaculture Nutrition, 5, 143-145. https://doi.org/10.1046/j.1365-2095.1999.00082.x
Hanan, M. Y., Amatul-Samahah, M. A., Jaapar, M. Z., & Mohamad, S. N. (2022). The effects of field cricket (Gryllus bimaculatus) meal substitution on growth performance and feed utilization of hybrid red tilapia (Oreochromis spp.). Applied Food Research, 2(1), 100070. https://doi.org/10.1016/j.afres.2022.100070
Ikeda, M., Kakizaki, H., & Matsumiya, M. (2017). Biochemistry of fish stomach chitinase. International Journal of Biological Macromolecules, 104(Part B), 1672-1681. https://doi.org/10.1016/j.ijbiomac.2017.03.118
Janssen, R. H., Vincken, J. P., Van Den Broek, L. A. M., Flogiano, V., & Lakemond, C. M. M. (2017). Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. Journal of Agricultural and Food Chemistry, 65(11), 2275-2278. https://doi.org/10.1021/acs.jafc.7b00471
Köprücü, K., & Özdemir, Y. (2005). Apparent digestibility of selected feed ingredients for Nile tilapia (Oreochromis niloticus). Aquaculture, 250(1-2), 308-316. https://doi.org/10.1016/j.aquaculture.2004.12.003
Kroeckel, S., Harjes, A. G. E., Roth, I., Katz, H., Wuertz, S., Susenbeth, A., & Schulz, C. (2012). When a turbot catches a fly: evaluation of a pre-pupae meal of the black soldier fly (Hermetia illucens) as fish meal substitute – Growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture, 364-365, 345-352. https://doi.org/10.1016/j.aquaculture.2012.08.041
Lanes, C. F. C., Pedron, F. A., Bergamin, G. T., Bitencourt, A. L., Dorneles, B. E. R., Villanova, J. C. V., Dias, K. C., Riolo, K., Oliva, S., Savastano, D., & Gianneto, A. (2021). Black soldier fly (Hermetia illucens) larvae and prepupae defatted meals in diets for zebrafish (Danio rerio). Animals, 11(3), 720. https://doi.org/10.3390/ani11030720
Liu, X., Chen, X., Wang, H., Yang, Q., Ur Rehman, K., Li, W., Cai, M., Li, Q., Mazza, L., Zhang, J., Yu, Z., & Zheng, L. (2017). Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. PloS One, 12(8), e0182601. https://doi.org/10.1371/journal.pone.0182601
Macedo-Viegas, E. M., & Souza, M. L. R. (2004). Préprocessamento e conservação do pescado produzido em piscicultura. In J. E. P. Cyrino, E. C. Urbinati, D. M. Fracalossi & N. Castagnolli (eds.), Tópicos especiais em piscicultura de água doce tropical intensiva. TecArt.
Magalhães, R., Sánchez-López, A., Leal, R.S., Martínez-Llorens, S., Oliva-Teles, A., & Peres, H. (2017). Black soldier fly (Hermetia illucens) pre-pupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax). Aquaculture, 476, 79-85. https://doi.org/10.1016/j.aquaculture.2017.04.021
National Research Council (NRC) (2011). Nutrient requirements of fish and shrimp. National Academy Press. https://doi.org/10.17226/13039
Nose, T. (1966). Recent advances in the study of fish digestion in Japan. Proceedings of the Symposium on Finfish Nutrition and Fish Feed Technology, 15.
Oliva-Teles, A., Enes, P., & Peres, H. (2015). Replacing fishmeal and fish oil in industrial aquafeeds for carnivorous fish. Feed and Feeding Practices in Aquaculture, 203-233. https://doi.org/10.1016/B978-0-08-100506-4.00008-8
Oliveira, A. C. B., Martinelli, L. A., Moreira, M. Z., Soares, M. G. M., & Cyrino, J. E. P. (2006). Seasonality of energy sources of Colossoma macropomum in a floodplain lake in the Amazon—Lake Camaleão, Amazonas, Brazil. Fisheries Management and Ecology, 13(3), 135-142. https://doi.org/10.1111/j.1365-2400.2006.00481.x
Perera, G. S. C., & Bhujel, R. C. (2022). Replacement of fishmeal by house cricket (Acheta domesticus) and field cricket (Gryllus bimaculatus) meals: Effect for growth, pigmentation, and breeding performances of guppy (Poecilia reticulata). Aquaculture Reports, 25, 101260. https://doi.org/10.1016/j.aqrep.2022.101260
Piccolo, G., Iaconisi, V., Marono, S., Gasco, L., Loponte, R., Nizza, S., & Parisi, G. (2017). Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata). Animal Feed Science Technology, 226, 12-20. https://doi.org/10.1016/j.anifeedsci.2017.02.007
Ribeiro, F. D. A. S., Rodrigues, L. A., & Fernandes, J. B. K. (2007). Desempenho de juvenis de acará-bandeira (Pterophyllum scalare) com diferentes níveis de proteína bruta na dieta. Boletim do Instituto de Pesca, 33, 195-203. Available at https://institutodepesca.org/index.php/bip/article/view/754/736
Rodrigues, L. A., & Fernandes, J. B. K. (2006). Influência do processamento da dieta no desempenho produtivo do acará-bandeira (Pterophyllum scalare). Acta Scientiarum. Animal Sciences, 28(1), 113-118. https://doi.org/10.4025/actascianimsci.v28i1.847
Santos, D. K. M., Freitas, O. R., Oishi, C. A., Fonseca, F. A. L., Parisi, G., & Gonçalves, L. U. (2023). Full-fat black soldier fly larvae meal in diet for tambaqui, Colossoma macropomum: digestibility, growth performance and economic analysis of feeds. Animals, 13(3), 360. https://doi.org/10.3390/ani13030360
Tacon, A. G. J. (1987). Nutrition and feeding of farmed fish and shrimp: a training manual. Redmond: Argent Laboratories Press.
Taufek, N. M., Muin, H., Raji, A. A. R., Razak, A., Yusof, H. M., & Alias, Z. (2016). Apparent digestibility coefficients and amino acid availability of cricket meal, Gryllus bimaculatus, and fishmeal in african catfish, Clarias gariepinus, diet. Journal of the World Aquaculture Society, 47(6), 798-805. https://doi.org/10.1111/jwas.12302
Tran, H. Q. (2021). European perch (Perca fluviatilis) fed dietary insect meal (Tenebrio molitor): From a stable isotope perspective. Aquaculture, 545, 737265. https://doi.org/10.1016/j.aquaculture.2021.737265
Triandafyllidou, A., & McAuliffe, M. (2019). Report overview. In UN Migration, editor. Migrant Smuggling Data and Research.
Van Huis, A. (2013). Potential of insects as food and feed in assuring food security. Annual Review of Entomology, 58, 563-583. https://doi.org/10.1146/annurev-ento-120811-153704
Van Huis, A. (2020). Insects as food and feed, a new emerging agricultural sector: a review. Journal of Insects as Food and Feed, 6(1), 27-44. https://doi.org/10.3920/JIFF2019.0017
Vasconcelos, G. T. (2021). Uso de insetos na alimentação de peixes. Boletins APAMVET, 12, 18-21. Zuanon, J. A. S., Salaro, A. L., Moraes, S. S. S., Alves, L. M. D. O., Balbino, E. M., & Araújo, E. S. (2009). Dietary protein and energy requirements of juvenile freshwater angelfish. Revista Brasileira de Zootecnia, 38(6), 989-993. https://doi.org/10.1590/S1516-35982009000600003
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2026 Raphael Santucci Browczuk Sayão, Thaís da Silva Oliveira, Rafael de Souza Romaneli, Hélio Jacobson da Silva, João Batista Kochenborger Fernandes

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.







