Farming of shrimp Litopenaeus schmitti with different salinities and dietary protein levels in bioflocs system

Authors

  • Michelle Midori Sena FUGIMURA Universidade Federal Rural do Rio de Janeiro (UFRRJ), Instituto de Zootecnia, Programa de Pós-graduação em Zootecnia PPGZ
  • Helaine dos Reis FLOR Universidade Federal Rural do Rio de Janeiro (UFRRJ), Instituto de Zootecnia, Programa de Pós-graduação em Zootecnia PPGZ
  • Wilson WASIELESKY JR. Universidade Federal do Rio Grande (FURG,) Instituto de Oceanografia, Estação Marinha de Aquacultura http://orcid.org/0000-0002-7267-4755
  • Lidia Miyako Yoshii OSHIRO Universidade Federal Rural do Rio de Janeiro (UFRRJ), Instituto de Zootecnia, Departamento de Produção Animal

Keywords:

white shrimp, zero-water-exchange system, microbial aggregate

Abstract

The objective of this study was to investigate the effect of protein levels in the diet on the water quality, bioflocs composition and shrimp development of Litopenaeus schmitti reared in different salinities using bioflocs technology (BFT). Juveniles L. schmitii (2.43 ± 0.35 g) were kept in tanks with 400 L (40 shrimps m-²) in three salinities (19, 26 and 33) and fed two commercial diets (30 and 40% crude protein) during a period of 35 days. Among the water quality parameters monitored, concentrations of nitrite were affected by the interaction of factors, as protein levels in the diet and salinity and by salinity alone (P<0.05). The shrimps development was affected by factors, such as salinity and protein level of the diet alone (P<0.05). As for dietary protein, the protein efficiency indicated that shrimps used better this nutrient, when they were fed the diet containing 30% protein content (2.23 ± 0.31) compared to 40% (1.87 ± 0.16) (P<0.05). With respect to salinity, the survival of shrimps presented higher value in the superior salinity (P<0.05). Therefore, results showed that the microbiological composition of bioflocs was affected by the factors evaluated, and that the farming of shrimp L. schmitti with the bioflocs technology, in any one of salinities used, can be performed with supply the diet with the lowest tested level of protein to obtain better productive performance of the species.

References

AKIYAMA, D.M. 1992 Future consideration for shrimp nutrition and the aquaculture feed
industry. In: SPECIAL SESSION ON SHRIMP FARMING, LA, USA, 1992. Anais… World
Aquaculture Society. p.198-205.

APHA -AMERICAN PUBLIC HEALTH ASSOCIATION. 1998 Standard methods for the examination of water and wastewater. Washington. 1193p.

AMINOT, A. e CHAUSSEPIED, M. 1983 Manuel desanalyses chimiques en milieu marin. Brest: Cnexo,395p.

AOAC. 2000 Official methods of analysis, 17ª Ed. Association of Official Analytical Chemists,
Gaithersburg, MD. 2200p.

AVNIMELECH, Y. 1999 Carbon/nitrogen ratio as a control element in aquaculture systems.
Aquaculture, 176(3-4): 227-235.

BARBIERI, R. 2010 Acute toxicity of ammonia in white shrimp (Litopenaeus schmitti) (Burkenroad,
1936, Crustacea) at different salinity levels. Aquaculture, 306(1-4): 329-333.

BARROS, L.C.; BARRETO, O.J.S.; HENRIQUES, M.B. 2014 The economic viability for the production
of live baits of white shrimp (Litopenaeus scmitti) in recirculation culture system. Aquaculture
International, 22(6): 1-11.

BRITO, R.; CHIMAL, M.-E.; ROSAS, C. 2000 Effect of salinity in survival, growth, and osmotic
capacity of early juveniles of Farfantepenaeus brasiliensis (Decapoda:Penaeidae). Journal of
Experimental Marine Biology and Ecology, 244(2):253-263.

BURFORD, M.A.; THOMPSON, P.J.; McINTOSH, R.P.; BAUMAN, R.P.; PEARSON, D.C. 2004 The
contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a highintensity, zero-exchange system. Aquaculture, 232(1-4): 525-537.

DECAMP, O.; CODY, J.; CONQUEST, L.; DELANOY, G.; TACON, A.G.J. 2003 Effect of salinity on natural community and production of Litopenaeus vannamei (Boone) within experimental zero-water exchange culture systems. Aquaculture Research, 34(4): 345-355.

DE SCHRYVER, P.; CRAB, R.; DEFOIRDT, T.; BOON, N.; VERSTRAETE, W. 2008 The basics of
bioflocs technology: the added value for aquaculture. Aquaculture, 277(3-4): 125-137.

FOLCH, J.M.; LEES, M.; SLOANE-STANLEY, G.H. 1957 A simple method for the isolation and
purification of total lipids from animal tissues. Journal of Biological Chemistry, 226: 497-507.

GIROTTO, M.F.V. 2010 Efeitos da amônia sobre juvenis de Litopenaeus vannamei (Boone, 1931) e
Litopenaeus schmitti (Burkenroad, 1936): excreção e toxicidade. Curitiba 79f. (Dissertação de
Mestrado. Universidade Federal do Paraná - UFPR). Disponí­­vel em: <http://www.gia.org.
br/images/publicacoes/dissertacoes> Acesso em: 08 nov. 2013.

GONZÁLEZ-FÉLIX, M.L.; GÓMEZ-JIMÉNEZ, S.; PEREZ-VELAZQUEZ, M.; DAVIS, D.A.; VELAZCO-RAMEí­"˜OS, J.G. 2007 Nitrogen budget for a low salinity, zero-water Exchange culture system: I. Effect of dietary protein level on the performance of Litopenaeus vannamei (Boone). Aquaculture Research, 38(8): 798-808.

GRIFFITH, R.E. 1967 Phytoplankton of Chesapeake Bay: An illustrated guide to the genera. University of Maryland Natural Resources Institute. 78p.

HARDY, R.W. 2010 Utilization of plant proteins in fish diets: effects of global demand and supplies
of fishmeal. Aquaculture Research, 41(5): 770â€"˜776.

IRIGOIEN, X. e CASTEL, J. 1997 Light limitation and distribution of chlorophyll pigments in a highly
turbid estuary: The Gironde (SW France). Estuarine Coastal and Shelf Science, 44(4): 507-517.

JU, Z.Y.; FORSTER, I.; CONQUEST, L.; DOMINY, W. 2008 Determination of microbial community
structures of shrimp floc cultures by biomarkers and analysis of floc amino acid profiles.Aquaculture Research, 39(2): 118-133.

KHATOON, H.; YUSOFF, F.M.; BANERJEE, S; SHARIFF, M.; MOHAMED, S. 2007 Use of periphytic cyanobacterium and mixed diatoms coated of Penaeus monodon Fabricius postlarvae.
Aquaculture, 271(1-4): 196-205.

KOROLEFF, F. e PALMORK, K.H. 1972 Report on the Ices/Scor Nutrient Intercalibration Experiment.
ICES, C.M. Hydr.Comm. 21p.

KRUMMENAUER, D.; SEIFERT JR., C.A.; POERSCH, L.H.; FOES, G.K.; LARA, G.R.; WASIELESKY JR., W. 2012 Cultivo de camarões marinhos em sistema de bioflocos: análise da reutilização da água. Atlí­¢ntica, 34(2): 103-111.

KUHN, D.D.; BOARDMAN, G.D.; LAWRENCE, A.L.; MARSH, L.; FLICK JR., G.J. 2009 Microbial
floc meal as a replacement ingredient for fish meal and soybean protein in shrimp feed.
Aquaculture, 296(1-2): 51-57.

LAMELA, R.E.L.; COFFIGHY, R.S.; QUINTANA, Y.C.; MARTÍNEZ, M. 2005 Phenoloxidse and peroxidase activity in the shrimp Litopenaeus schmitti, Pérez-Farfante and Kensley (1997)
exposed to low salinity. Aquaculture Research, 36(13): 1293-1297.

LEI, C.H.; HSIEH, L.Y.; CHEN, C.K. 1989 Effects of salinity on the oxygen consumption and
ammonia-N excretion of young juvenile of the grass shrimp, Penaeus monodon Fabricius. Bulletin
of the Institute of Zoology, 28: 245-256.

LIGNOT, J.H.; COCHARD, J.C.; SOYEZ, C.; LEMAIRE, P.; CHARMANTIER, G. 1999 Osmoregulatory capacity according to nutritional status, molt stage and body weight in Penaeus stylirostris. Aquaculture, 170(1): 79-92.

LIN, Y.C. e CHEN, J.C. 2001 Acute toxicity of ammonia on Litopenaeus vannamei Boone juveniles at
different salinity levels. Journal of Experimental Marine Biology and Ecology, 259(1): 109-119.

LIN, Y.C. e CHEN, J.C. 2003 Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at
different salinity levels. Aquaculture, 224(1-4):193-201.

MAICA, P.F.; BORBA, M.R.; WASIELESKY JR, W.2012 Effect of low salinity on microbial floc composition and performance of Litopenaeus vannamei (Boone) juveniles reared in a zerowater-exchange super-intensive system.quaculture Research, 43(3): 361-370.

MARTINEZ-CORDOVA, L.R.; CAMPAí­"˜ATORRES, A.; PORCHAS-CORNEJO, M.A. 2003 Dietary protein level and natural food management in the culture of blue Litopenaeus stylirostris and white shrimp Litopenaeus vannamei in microcosms. Aquaculure Nutrition, 9(3): 155-160.

McINTOSH, D.; SAMOCHA, T.M.; JONES, E.R.; LAWRENCE, A.L.; HOROWITZ, S.; HOROWITZ, A. 2001 Effects of two commercially available low-protein diets (21% and 31%) on water and sediment quality, and on the production of Litopenaeus vannamei in an outdoor tank system with limited water discharge. Aquacultural Engineering, 25(2): 69-82.

MOSS, S.M.; DIVAKARAN, S.; KIM, B.G. 2001 Stimulating effects of pond water on digestive
enzyme activity in the Pacific white shrimp, Litopenaeus vannamei (Boone). Aquaculture
Research, 32(2): 125-131.

MOSS, S.M.; FORSTER, I.P.; TACON, A.G.J. 2006 Sparing effect of pond water on vitamins in
shrimp diets. Aquaculture, 258(1-4): 388-395.

NETO PEREIRA, J.B.; DANTAS, D.M.M.; GÁLVEZ, A.O.; BRITO, L.O. 2008 Avaliação das comunidades planctônicas e bentônicas de microalgas em viveiros de camarão (Litopenaeus vannamei). Boletim do Instituto de Pesca, 34(4): 543-551.

NEEDHAM, P.R. 1973 Guias para el reconocimiento de algas e invertebrados dulceacuí­­cuolas. 5ª edição,p.3-225.

PALMER, C.M. 1977 Algae and water pollution an illustrated manual on the identification, significance, and control of algae in water supplies and in polluted water. U.S. Environmental Protection Agency Cincinnati, Ohio. 124p.

PÉREZ FARFANTE, I. e KENSLEY, B. 1997 Penaoeid and Sergestoid Shrimps and Prawns of the World: keys and diagnoses for the families and genera. Éditions du Muséum Paris. 91p.

PEREZ-VELAZQUEZ, M.; GONZÁLEX-FÉLIX, M.L.; JAIMES-BUSTAMENTE, F.; MARTÍNEZCÓRDOVA, L.R.; TRUJILLO-VILLALBA, D.A. 2007 Investigation of the effects of salinity and dietary protein level on growth and survival of pacific white shrimp, Litopenaeus vannamei. Journal of the World Aquaculture Society, 38(4):475-485.

PEREZ -VELAZQUEZ, M.; GONZÁLEZ-FÉLIX, M.L.; GÓMEZ-JIMÉNEZ, S.; DAVIS, D.A.; MIRAMONTES-HIGUERA, N. 2008 Nitrogen budget for a low-salinity, zero-water exchange culture system: II. Evaluation of isonitrogenous feeding of various dietary protein levels to Litopenaeus vannamei (Boone). Aquaculture Research, 39(9): 995-1004.

PONCE-PALAFOX, J.; MARTINEZ-PALACIOS, C.A.; ROSS, L.G. 1997 The effects of salinity and
temperature on the growth and survival rates of juvenile white shrimp, Penaeus vannamei, Boone, 1931. Aquaculture, 157(1-2): 107-115.

RAMOS, R. e ANDREATTA, E. 2011 Requerimientos de proteí­­na y energí­­a bruta en juveniles de
camarón rosado Farfantepenaeus paulensis (PérezFarfante, 1967) sometidos a diferentes salinidades. Latin American Journal of Aquatic Research, 39(3): 427-438.

ROMANO, N. e ZENG, C. 2006 The effects of salinity on the survival, growth and haemolymph
osmolality of early juvenile blue swimmer crabs, Portunus pelagicus. Aquaculture, 260(1-4):
151-162.

ROMANO, N. e ZENG, C. 2012 Osmoregulation in decapod crustaceans: implications to
aquaculture productivity, methods for potential improvement and interactions with elevated
ammonia exposure. Aquaculture, 334-337: 12-23.

ROSAS, C.; SÁNCHEZ, A.; DÍAZ-IGLESA, E.; BRITO, R.; MARTINEZ, E.; SOTO, L.A. 1997
Critical dissolved oxygen level to Penaeus setiferus and Penaeus schmitti postlarvae (PL10-18)
exposed to salinity changes. Aquaculture, 152(1-4): 259-272.

SALZE, G.; McLEAN, E.; BATTLE, P.R.; SCHWARZ, M.H.; CRAIG, S.R. 2010 Use of soy protein
concentrate and novel ingredients in the total elimination of fish meal and fish oil in diets for
juvenile cobia, Rachycentron canadum. Aquaculture, 298(3-4): 294-299.

SAMOCHA, T.M.; LAWRENCE, A.L.; COLLINS, C.A.; CASTILLE, F.L.; BRAY, W.A.; DAVIES,C.J.; LEE, P.G.; WOOD, G.F. 2004 Production of the Pacific white shrimp, Litopenaeus vannamei, in high-density greenhouse-enclosed raceways using low salinity groundwater. Journal of Applied Aquaculture, 15(3-4): 1-19.

SETIARTO, A.; STRí­Å“SSMANN, C.A.; TAKASHIMA, F.; WATANABE, S.; YOKOTA, M. 2004 Shortterm responses of adult kuruma shrimp Marsupenaeus japonicus to environmental salinity: osmotic regulation, oxygen consumption and ammonia excretion. Aquaculture Research, 35(7):669-677.

SHIAU, S.Y.; KWOK, C.C.; CHOU, B.S. 1991 Optimal dietary protein level of Penaeus monodon reared in seawater and brackish water. Nippon Suisan Gakkaishi, 57: 711-716

SILVA, K.R.; WASIELESKY JR., W.; ABREU, P. 2013 Nitrogen and phosphorus dynamics in the
biofloc production of the pacific white shrimp, Litopenaeus vannamei. Journal of the World
Aquaculture Society, 44(1): 30-41.

URDANETA, R.E.P. 1992 Resultados preliminares sobre los requirimientos proteicos de juveniles
de camarón blanco (Penaeus schmitti, Burkenroad) en acuarios experimentales. Zootecnia Tropical, 10(2): 189-203.

VAN WYK, P. e SCARPA, J. 1999 Water quality and management. In: VAN WYK, P.; DAVISHODGKINS, M.; LARAMORE, R.; MAIN, K.L.; MOUNTAIN, J.; SCARPA, J. Farming Marine Shrimp in Recirculating Freshwater Systems. Florida Department of Agriculture and Consumer Services, Tallahassee, p.128-138.

WASIELESKY, W.; ATWOOD, H.; STOKES, A.; BROWDY, C.L. 2006 Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, 258(1-4): 396-403.

XU, W.J.; PAN, L.; ZHAO, D.; HUANG, J. 2012 Preliminary investigation into the contribution of bioflocs on protein nutrition of Litopenaeus vannamei fed with different dietary protein levels
in zero-water exchange culture tanks. Aquaculture, 350-353: 147-153.

XU, W-J. e PAN, L-Q. 2013 Enhancementet of imune response and antioxidante status of Litopenaeus vannamei juveniles in biofloc-based culture tanks manipulating high C/N ratio of feed input. Aquacuture, 412-413: 117-124.

ZAR, J.H. 1996 Biostatistical Analysis. 3rd ed. New Jersey: Prentice Hall. 662p

Published

2018-11-18

Most read articles by the same author(s)