18:3n3/18:2n6 ratio on fatty acid digestibility in pacu
DOI:
https://doi.org/10.20950/1678-2305.2017v43n2p222Keywords:
Piaractus mesopotamicus, alpha linolenic acid, linseed oil, omega-3, aquaculture, vegetable-based aquafeedsAbstract
The objective of this work was to determine the effect of diets with the following 18:3n3/18:2n6 ratios: 2.98; 1.68; 1.03; 0.61 and 0.35 (treatments 1 to 5 respectively), on the apparent digestibility coefficients (ADC) of fatty acids in vegetable-based diets for pacu juveniles (Piaractus mesopotamicus). Eighteen groups of 16 fish each were fed for 34 days with a control diet containing tilapia oil as sole ingredient of animal origin (treatment 6). In a second phase, for 72 days, each diet was fed to 3 random groups, and finally the fatty acid ADCs were calculated. The control diet produced the highest ADC of saturated fatty acids (97.3%) and monounsaturated fatty acids (98.24%); and treatment 1, the highest polyunsaturated fatty acids (99.25%) and 18:3n3 (99.83%) ADCs. The ADC of 18:3n3 varied in a decreasing manner according to the variation of the ratio 18:3n3/18:2n6 and was always higher than the ADC of 18:2n6, despite the non-specific action of lipases. We conclude that the ADCs of fatty acids, or groups of them, increase as their degree of unsaturation and concentration in the diet increases, and that the fluidity of the oil affects the ADC of 18:3n3 -ALA and not of 18:2n6 - LA when these are the only poly-unsaturated fatty acids.
References
ABIMORAD, E. G.; FAVERO, G. C.; CASTELLANI,D.; GARCIA, F.; CARNEIRO, D. J. 2009 Dietary
supplementation of lysine and/or methionine on performance, nitrogen retention and excretion in pacu Piaractus mesopotamicus reared in cages.Aquaculture, 295(3-4): 266í 270.
BLIGH, E. G.; DYER, W. J. 1959 A rapid method for total lipid extraction and purification. Canadian
Journal of Biochemistry and Physiology, 37(8):911- 917.
COLOMBO-HIXSON, S. M.; OLSEN, R. E.; MILLEY,J. E.; LALL, S. P. 2011 Lipid and fatty acid
digestibility in Calanus copepod and krill oil by Atlantic halibut (Hippoglossus hippoglossus L.).
Aquaculture, 313(1-4): 115í 122.
FRANCIS, D. S.; TURCHINI, G. M.; JONES, P. L.; DE SILVA, S. S. 2007 Effects of fish oil substitution
with a mix blend vegetable oil on nutrient digestibility in Murray cod, Maccullochella peelii peelii. Aquaculture, 269(1-4): 447í 455.
FURUKAWA, A.; TSUKAHARA, H. 1966 On the acid digestion method for the determination of
chromic oxide as an index substance in the study of digestibility of fish feed. Bulletin of the Japanese Society of Scientific Fisheries, 32(6): 502í 506.
IBGE - Instituto Brasileiro de Geografia e Estatística.2015 Produção da Pecuária Municipal. Rio de
Janeiro, Brasil, 43(1): 1-49.
GLENCROSS, B. D. 2009 Exploring the nutrtional demand for essential fatty acids by aquaculture
species. Reviews in Aquaculture, 1(1): 71-124.
GUNASEKERA, R. M.; LEELARASAMEE, K.;DE SILVA, S. S. 2002 Lipid and fatty acid digestibility of three oil types in the Australian shortfin eel, Anguilla australis. Aquaculture, 203(3-4): 335í 347.
HUGUET, C. T.; NORAMBUENA, F.; EMERY, J. A.;HERMON, K.; TURCHINI G. M. 2015 Dietary
n-6/n-3 LC-PUFA ratio, temperature and time interactions on nutrients and fatty acids
digestibility in Atlantic salmon. Aquaculture,436(1): 160í 166.
MARTINS, D. A.; VALENTE, L. M. P.; LALL, S. P.2009 Apparent digestibility of lipid and fatty acids in fish oil, poultry fat and vegetable oil diets by Atlantic halibut, Hippoglossus hippoglossus L. Aquaculture, 294(1-2): 132í 137.
NELSON, D. L.; COX, M. M. 2006 Lehninger Princípios de Bioquímica. 4. ed. São Paulo: Sarvier. 1336 p
NG, W. K.; CODABACCUS, B. M.; CARTER, C. G.;NICHOLS, P. D. 2010 Replacing dietary fish oil
with palm fatty acid distillate improves fatty acid digestibility in rainbow trout, Oncorhynchus
mykiss, maintained at optimal or elevated water temperature. Aquaculture, 309(1-4): 165í 172.
NRC. Nutrient Requirements of Fish. 2011 Washington,D.C.: National Academy Press.ROSJO, C.; NORDRUM, S.; OLLI, J. J.; KROGDAHL,A.; RUYTER, B.; HOLM, H. 2000 Lipid digestibility and metabolism in Atlantic salmon (Salmo salar) fed medium-chain triglycerides.Aquaculture, 190(2000): 65-76.
SARGENT, J. R.; TOCHER, D. R.; BELL, J. G. 2002 The Lipids. In: HALVER, J. E.; HARDY, R. W.
Fish Nutrition. 3 ed. Maryland Heights/MO:Elsevier, p. 181í 257.
TEOH, C.Y.; TURCHINI, G. M.; NG, W.K. 2011Genetically improved farmed Nile tilapia and red hybrid tilapia showed differences in fatty acid metabolism when fed diets with added fish oil or a vegetable oil blend. Aquaculture,312(1-4): 126í 136.
THANUTHONG, T.; FRANCIS, D. S.; SENADHEERA,S. P. S. D.; JONES, P. L.; TURCHINI, G. M. 2012
Short-term food deprivation before a fish oil finishing strategy improves the deposition of
n-3 LC-PUFA, but not the washing-out of C18 PUFA in rainbow trout. Aquaculture Nutrition,
18(4): 441-456.
TURCHINI, G. M.; FRANCIS, D. S.; DE SILVA, S. S. 2007 A whole body, in vivo, fatty acid
balance method to quantify PUFA metabolism (desaturation, elongation and beta-oxidation).
Lipids, 42(11): 1065í 1071.
TURCHINI, G. M.; NG, W.K.; TOCHER, D. R. 2012 Fish Oil Replacement and Alternative Lipid Sources
in Aquaculture Feeds. CRC Press, 2011.
VISENTAINER, J. V. 2012 Aspectos analíticos da resposta do detector de ionização em chama
para ésteres de ácidos graxos em biodiesel e alimentos. Quimica Nova, 35(2): 274í 279.