DIETS FOR GROW-OUT OF PIRARUCU IN NET CAGE: PERFORMANCE, PHYSIOLOGICAL PARAMETERS, FILLET COMPOSITION AND FEEDING COST

Authors

  • Paulo Adelino de Medeiros Instituto Federal do Amazonas -  IFAM
  • Edimar Lopes da Costa Instituto Federal do Amazonas -  IFAM
  • Elenice Martins Brasil Universidade Federal de Santa Catarina -  UFSC
  • Eduardo Akifumi Ono Nova Acqua
  • Elizabeth Gusmão Affonso Instituto Nacional de Pesquisas da Amazônia -  INPA, Universidade Nilton Lins

DOI:

https://doi.org/10.20950/1678-2305.2019.45.4.532

Keywords:

intensive systems, native fish, nutrition, physiology

Abstract

The present study evaluated practical diets with increasing levels of protein and energy on performance, fillet composition, feed cost, and physiological responses of pirarucu (Arapaima gigas) juveniles during the grow-out phase in a net cage system. In an on-farm trial for 90 days 225 pirarucu juveniles with initial weight ± standard deviation of 2025 ± 335 g were fed to apparent satiety with extruded diets containing 37.4 (T-37), 40.8 (T-40), 43.9 (T-43), 45.5 (T-46), and 47.1% (T-49) crude protein (CP), increasing lipid levels, and energy:protein ratio fixed in 10 kcal g-1. Protein and lipid concentrations in the diets influenced the cost, fillet composition, and important physiological aspects of the health maintenance and productive performance of the pirarucu juveniles. Fish fed the T-37 diet had lower concentrations of fat in body cavity, fillet and blood, and had a lower cost associated with feeding. The increase in protein and energy levels in the other diets tested reduced the economic return, did not improve the zootechnical performance and caused physiological changes in the fish.

 

References

Abdel-Tawwab, M.; Ahmad, M.H.; Khattab, Y.A.E.; Shalaby, A.M.E. 2010. Effect of dietary protein level, initial body weight, and their interaction on the growth, feed utilization, and physiological alterations of Nile tilapia, Oreochromis niloticus (L.). Aquaculture (Amsterdam, Netherlands), 298(3-4): 267-274. http://dx.doi.org/10.1016/j.aquaculture.2009.10.027.

Alami-Durante, H.; Cluzeaud, M.; Bazin, D.; Schrama, J.W.; Saravanan, S.; Geurden, I. 2019. Muscle growth mechanisms in response to isoenergetic changes in dietary non-protein energy source at low and high protein levels in juvenile rainbow trout. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 230: 91-99. http://dx.doi.org/10.1016/j.cbpa.2019.01.009. PMid:30660681.

Andrade, J.I.; Ono, E.A.; de Menezes, G.C.; Brasil, E.M.; Roubach, R.; Urbinati, E.C.; Tavares-Dias, M.; Marcon, J.L.; Affonso, E.G. 2007. Influence of diets supplemented with vitamins C and E on pirarucu (Arapaima gigas) blood parameters. Comparative Biochemistry and Physiology, 146(4): 576-580. PMid:16716624.

AOAC í  Association of Official Analytical Chemists. 1999. Official Methods of Analysis. 16st ed. Gaithersburg: AOAC. 465p.

Arnason, J.; Bjornsdottir, R.; Arnarsson, I.; Arnadottir, G.S.; Thorarensen, H. 2010. Protein requirements of Atlantic cod Gadus morhua L. Aquaculture Research, 41(3): 385-393. http://dx.doi.org/10.1111/j.1365-2109.2009.02439.x.

Azevedo, P.A.; Leeson, C.Y.; Cho, D.; Bureau, P. 2004. Growth nitrogen and energy utilization of juveniles from four salmonid species: Diet, species and size effects. Aquaculture (Amsterdam, Netherlands), 234(1-4): 393-414. http://dx.doi.org/10.1016/j.aquaculture.2004.01.004.

Bicudo, I.J.A.; Sado, R.Y.; Cyrino, J.E.P. 2009. Growth and haematology of pacu, Piaractus mesopotamicus, fed diets with varying protein to energy ratio. Aquaculture Research, 40(4): 486-495. http://dx.doi.org/10.1111/j.1365-2109.2008.02120.x.

Cerdeira, K.A.; Souza, K.J.N.S.; Ferreira, J.B.; Zampar, A.; Ono, E.A.; Affonso, E.G. 2018. Soybean meal in diets for juvenile of pirarucu. Boletim do Instituto de Pesca, 44(3): e318. http://dx.doi.org/10.20950/1678-2305.2018.318.

Cipriano, F.S.; Lima, K.S.; Passinato, E.B.; Jesus, R.M.; Magalhães-Junior, F.O.; Tonini, W.C.T.; Braga, L.G.T. 2015. Apparent digestibility of energetic ingredients by pirarucu juveniles, Arapaima gigas (Schinz, 1822). Latin American Journal of Aquatic Research, 43: 786-791.

Cipriano, F.S.; Lima, K.S.; Souza, R.H.B.; Tonini, W.C.T.; Passinato, E.B.; Braga, L.G.T. 2016. Digestibility of animal and vegetable protein ingredients by pirarucu juveniles (Arapaima gigas). Revista Brasileira de Zootecnia, 45(10): 581-586. http://dx.doi.org/10.1590/S1806-92902016001000001.

Corrêa, C.F.; Aguiar, L.H.; Lundstedt, L.M.; Moraes, G. 2007. Responses of digestive enzymes of tambaqui (Colossoma macropomum) to dietary cornstarch changes and metabolic inferences. Comparative Biochemistry and Physiology, 147(4): 857-862. http://dx.doi.org/10.1016/j.cbpa.2006.12.045. PMid:17490905.

Davies, S.J.; Laporte, J.; Gouveia, A.; Salim, H.S.; Woodgate, S.M.; Hassaan, M.S.; El-Haroun, E.R Davies, S.J.; Laporte, J.; Gouveia, A.; Salim, H.S.; Woodgate, S.L.; Hassan, M.S. 2019. Validation of processed animal proteins (mono-PAPS) in experimental diets for juvenile gilthead sea bream (Sparus aurata L.) as primary fish meal replacers within a European perspective. Aquaculture Nutrition, 25(1): 225-238. http://dx.doi.org/10.1111/anu.12846.

Del Risco, M.; Velásquez, J.; Sandoval, M.; Padilla, P.; Mori-Pinedo, L.; Chu-Koo, F. 2008. Efecto de três niveles de proteí­­na dietaria em el crecimiento de juveniles de paiche, Arapaima gigas (Shinz, 1822). Folia Amazónica, 17(1): 29-37.

Diógenes, A.F.; Basto, A.; Estevão-Rodrigues, T.T.; Moutinho, S.A.; Aires, T.; Oliva-Teles, A.; Peres, H. 2019. Soybean meal replacement by corn distillers dried grains with solubles (DDGS) and exogenous non-starch polysaccharidases supplementation in diets for gilthead sabbream (Sparus aurata) juveniles. Aquaculture (Amsterdam, Netherlands), 500: 435-442. http://dx.doi.org/10.1016/j.aquaculture.2018.10.035.

Drumond, G.V.F.; Caixeiro, A.P.A.; Tavares-Dias, M.; Marcon, J.L.; Affonso, E.G. 2010. Caracterí­­sticas bioquí­­micas e hematológicas do pirarucu Arapaima gigas Schinz, 1822 (Arapaimidae) de cultivo semi-intensivo na Amazônia. Acta Amazonica, 40(3): 591-596. http://dx.doi.org/10.1590/S0044-59672010000300020.

Einen, O.; Roem, A.J. 1997. Dietary protein/energy ratios for Atlantic salmon in relation to fish size: growth, feed utilization and slaughter quality. Aquaculture Nutrition, 3: 115-126.

El-Sayed, A.M.; Dickson, M.W.; El-Naggar, G.O. 2015. Value chain analysis of the aquaculture feed sector in Egypt. Aquaculture (Amsterdam, Netherlands), 437: 92-101. http://dx.doi.org/10.1016/j.aquaculture.2014.11.033.

Engin, K.; Carter, C.G. 2001. Ammonia and urea excretion rates of juvenile Australian short-finned eel (Anguilla australis australis) as influenced by dietary protein level. Aquaculture (Amsterdam, Netherlands), 194: 123-136.

FAO í  Food and Agriculture Organization of the United Nations. 2018. The state of world fisheries and aquaculture. Roma: FAO. 227p.

Hatlen, B.; Grisdale-Helland, B.; Helland, S.J. 2005. Growth, feed utilization and body composition in two size groups of Atlantic halibut (Hippoglossus hippoglossus) fed diets differing in protein and carbohydrate content. Aquaculture (Amsterdam, Netherlands), 249(1-4): 401-408. http://dx.doi.org/10.1016/j.aquaculture.2005.03.040.

Ituassú, D.R.; Pereira-Filho, M.; Roubach, R.; Crescêncio, R.; Cavero, B.A.; Gandra, A.L. 2005. Ní­­veis de proteí­­na bruta para juvenis de pirarucu. Pesquisa Agropecuária Brasileira, 40: 255-259.

Jiang, S.; Wu, X.; Li, W.; Wu, M.; Luo, Y.; Lu, S.; Lin, H. 2015. Effects of dietary protein and lipid levels on growth, feed utilization, body and plasma biochemical compositions of hybrid grouper (Epinephelus lanceolatus ââ„¢"š í­"” Epinephelus fuscoguttatus ♀) juveniles. Aquaculture (Amsterdam, Netherlands), 446: 148-155. http://dx.doi.org/10.1016/j.aquaculture.2015.04.034.

Kabir, K.A.; Verdegem, M.C.J.; Verreth, J.A.J.; Phillips, M.J.; Schrama, J.W. 2019. Effect of dietary protein to energy ratio, stocking density and feeding level on performance of Nile tilapia in pond aquaculture. Aquaculture (Amsterdam, Netherlands), 511: 634200. http://dx.doi.org/10.1016/j.aquaculture.2019.06.014.

Lacroix, M.; Gaudichon, C.; Martin, A.; Morens, C.; Mathe, V.; Tome, D.; Huneau, J.F. 2004. A long term high-protein diet markedly reduces adipose tissue without major side effects in Wistar male rats. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 287(4): R934-R942. http://dx.doi.org/10.1152/ajpregu.00100.2004. PMid:15155276.

Lee, H.M.; Cho, K.C.; Lee, J.E.; Yang, S.G. 2001. Dietary protein requirement of juvenile giant croaker, Nibea japonica Temminck and Schlegel. Aquaculture Research, 32: 112-118. http://dx.doi.org/10.1046/j.1355-557x.2001.00050.x.

Luo, L.; Xue, M.; Vachot, C.; Geurden, I.; Kaushik, S. 2014. Dietary medium chain fatty acids from coconut oil have little effects on postprandial plasma metabolite profiles in rainbow trout (Oncorhynchus mykiss). Aquaculture (Amsterdam, Netherlands), 420í 421: 24-31.

Magalhães-Junior, F.O.; Santos, M.J.M.; Allaman, I.B.; Soares-Junior, I.J.; Silva, R.F.; Braga, L.G.T. 2017. Digestible protein requirement of pirarucu juveniles (Arapaima gigas) reared in outdoor aquaculture. The Journal of Agricultural Science, 9(9): 114-122. http://dx.doi.org/10.5539/jas.v9n9p114.

Mikkelsen, P.B.; Toubro, S.; Astrup, A. 2000. Effect of fat reduced diets on 24 h energy expenditure: comparisons between animal protein, vegetable protein and carbohydrate. The American Journal of Clinical Nutrition, 72(5): 1135-1141. PMid:11063440.

Oliva-Teles, A. 2012. Nutrition and health of aquaculture fish. Journal of Fish Diseases, 35(2): 83-108. http://dx.doi.org/10.1111/j.1365-2761.2011.01333.x. PMid:22233511.

Oliveira, E.G.; Pinheiro, A.B.; Oliveira, V.Q.; Silva, A.R.M.; Moraes, M.G.; Rocha, Í.R.C.B.; Sousa, R.R.; Costa, F.H.F. 2012. Effects of stocking density on the performance of juvenile pirarucu (Arapaima gigas) in cages. Aquaculture (Amsterdam, Netherlands), 370-371: 96-101. http://dx.doi.org/10.1016/j.aquaculture.2012.09.027.

Ono, E.A.; Nunes, E.S.S.; Cedano, J.C.C.; Pereira-Filho, M.; Roubach, R. 2008. Digestibilidade aparente de dietas práticas com diferentes relações energia:protéina em juvenis de pirarucu. Pesquisa Agropecuária Brasileira, 43(2): 249-254. http://dx.doi.org/10.1590/S0100-204X2008000200014.

Rawles, S.D.; Green, B.W.; McEntire, M.E.; Gaylord, T.G.; Barrows, F.T. 2018. Reducing dietary protein in pond production of hybrid striped bass (Morone chrysopsí­"”M. saxatilis): Effects on fish performance and water quality dynamics. Aquaculture (Amsterdam, Netherlands), 490: 217-227. http://dx.doi.org/10.1016/j.aquaculture.2018.01.045.

Sagada, G.; Chen, J.; Shen, B.; Huang, A.; Sun, L.; Jiang, J.; Jin, C. 2017. Optimizing protein and lipid levels in practical diet for juvenile northern snakehead fish (Channa argus). Animal Nutrition, 3: 156-163. https://doi.org/10.1016/j.aninu.2017.03.003.

Salze, G.P.; Davis, D.A. 2015. Taurine: a critical nutrient for future fish feeds. Aquaculture (Amsterdam, Netherlands), 437: 215-229. http://dx.doi.org/10.1016/j.aquaculture.2014.12.006.

Shah-Alam, M.; Watanabe, W.O.; Carroll, P.M. 2008. Dietary protein requirements of juvenile black sea bass, Centropristis striata. Journal of the World Aquaculture Society, 39: 656-663.

Sioli, H. 1985. Amazônia: Fundamentos da ecologia da maior região de florestas tropicais. 1º Ed. Petrópolis: Editora Vozes Ltda. 69p.

Tu, Y.; Xie, S.; Han, D.; Yang, Y.; Jin, J.; Zhu, X. 2015. Dietary arginine requirement for gibel carp (Carassis auratus gibelio var.CAS III) reduces with fish size from 50 g to 150 g associated with modulation of genes involved in TOR signaling pathway. Aquaculture (Amsterdam, Netherlands), 449: 37-47. http://dx.doi.org/10.1016/j.aquaculture.2015.02.031.

Tuan, L.A.; Williams, K.C. 2007. Optimum dietary protein and lipid specifications for juvenile malabar grouper (Epinephelus malabaricus). Aquaculture (Amsterdam, Netherlands), 267: 129-138.

Vieira, V.P.; Inoue, L.A.K.; Moraes, G. 2005. Metabolic responses of matrinxã (Brycon cephalus) to dietary protein level. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 140(3): 337-342. http://dx.doi.org/10.1016/j.cbpb.2005.01.018. PMid:15792599.

Wang, J.T.; Han, T.; Li, X.Y.; Yang, Y.X.; Yang, M.; Hu, S.X.; Jiang, Y.D.; Harpaz, S. 2017. Effects of dietary protein and lipid levels with different protein-to-energy ratios on growth performance, feed utilization and body composition of juvenile red-spotted grouper, Epinephelus akaara. Aquaculture Nutrition, 1(1): 1-9. http://dx.doi.org/10.1111/anu.12467.

Wicks, B.J.; Randall, D.J. 2002. The effect of feeding and fasting on ammonia toxicity in juvenile rainbow trout, Oncorhynchus mykiss. Aquatic Toxicology (Amsterdam, Netherlands), 59(1-2): 71-82. PMid:12088634.

Wu, X.; Castillo, S.; Rosales, M.; Burns, A.; Mendoza, M.; Gatlin 3rd, D.M. 2015. Relative use of dietary carbohydrate, non-essential amino acids, and lipids for energy by hybrid striped bass, Morone chrysops ♀ í­"” M. saxatilis ââ„¢"š. Aquaculture (Amsterdam, Netherlands), 435: 116-119. http://dx.doi.org/10.1016/j.aquaculture.2014.09.030.

Yamamoto, T.; Shima, T.; Furuita, H.; Suzuki, N. 2002. Influence of dietary fat level and whole-body adiposity on voluntary energy intake by juvenile rainbow trout Oncorhynchus mykissi (Walbaun) under selffeeding conditions. Aquaculture Research, 33(9): 715-723. http://dx.doi.org/10.1046/j.1365-2109.2002.00708.x.

Yang, S.D.; Liou, C.H.; Liu, F.G. 2002. Effects of dietary protein level on growth performance, carcass composition and ammonia excretion in juvenile silver perch (Bidyanus bidyanus). Aqualculture, 213(1-4): 363-372. http://dx.doi.org/10.1016/S0044-8486(02)00120-5.

Zhang, Y.; Sun, Z.; Wang, A.; Ye, C.; Zhu, X. 2017. Effects of dietary protein and lipid levels on growth, body and plasma biochemical composition and selective gene expression in liver of hybrid snakehead (Channa maculata ♀ í­"” Channa argus ââ„¢"š) fingerlings. Aquaculture (Amsterdam, Netherlands), 468: 1-9.

Downloads

Published

2019-12-03

Most read articles by the same author(s)