DIETAS PARA A ENGORDA DE PIRARUCU EM TANQUE REDE: DESEMPENHO, PARÂMETROS FISIOLÓGICOS, COMPOSIÇÃO DO FILÉ E CUSTOS DA ALIMENTAÇÃO
DOI:
https://doi.org/10.20950/1678-2305.2019.45.4.532Palavras-chave:
intensive systems, native fish, nutrition, physiologyResumo
O presente estudo avaliou dietas práticas com níveis crescentes de proteína e energia no desempenho, composição do filé, custo com alimentação e respostas fisiológicas de juvenis de pirarucu Arapaima gigas durante a fase da engorda em sistema de tanque rede. Em um ensaio em sistema de produção, durante 90 dias, 225 pirarucus com peso médio inicial ± desvio padrão de 2025 ± 335 g foram alimentados até a saciedade aparente com dietas práticas extrusadas contendo 37,4 (T-37), 40,8 (T-40), 43,9 (T-43), 45,5 (T-46) e 47,1% (T-49) de proteína bruta (PB), níveis crescentes de lipídeo e relação energia/proteína de 10 kcal g-1. As concentrações de proteína e lipídeo nas dietas influenciaram o custo, a composição do filé e parí¢metros fisiológicos importantes na manutenção da saúde e do desempenho produtivo de juvenis de pirarucu. Os peixes alimentados com a dieta T-37 cresceram com menor volume de gordura visceral, sangue e filé, além do menor custo associado com a alimentação. O aumento nos níveis de proteína e energia nas demais dietas testadas reduziu o retorno econômico, não melhorou o desempenho zootécnico e causou alterações fisiológicas nos peixes.
Referências
Alami-Durante, H.; Cluzeaud, M.; Bazin, D.; Schrama, J.W.; Saravanan, S.; Geurden, I. 2019. Muscle growth mechanisms in response to isoenergetic changes in dietary non-protein energy source at low and high protein levels in juvenile rainbow trout. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 230: 91-99. http://dx.doi.org/10.1016/j.cbpa.2019.01.009. PMid:30660681.
Andrade, J.I.; Ono, E.A.; de Menezes, G.C.; Brasil, E.M.; Roubach, R.; Urbinati, E.C.; Tavares-Dias, M.; Marcon, J.L.; Affonso, E.G. 2007. Influence of diets supplemented with vitamins C and E on pirarucu (Arapaima gigas) blood parameters. Comparative Biochemistry and Physiology, 146(4): 576-580. PMid:16716624.
AOAC í Association of Official Analytical Chemists. 1999. Official Methods of Analysis. 16st ed. Gaithersburg: AOAC. 465p.
Arnason, J.; Bjornsdottir, R.; Arnarsson, I.; Arnadottir, G.S.; Thorarensen, H. 2010. Protein requirements of Atlantic cod Gadus morhua L. Aquaculture Research, 41(3): 385-393. http://dx.doi.org/10.1111/j.1365-2109.2009.02439.x.
Azevedo, P.A.; Leeson, C.Y.; Cho, D.; Bureau, P. 2004. Growth nitrogen and energy utilization of juveniles from four salmonid species: Diet, species and size effects. Aquaculture (Amsterdam, Netherlands), 234(1-4): 393-414. http://dx.doi.org/10.1016/j.aquaculture.2004.01.004.
Bicudo, I.J.A.; Sado, R.Y.; Cyrino, J.E.P. 2009. Growth and haematology of pacu, Piaractus mesopotamicus, fed diets with varying protein to energy ratio. Aquaculture Research, 40(4): 486-495. http://dx.doi.org/10.1111/j.1365-2109.2008.02120.x.
Cerdeira, K.A.; Souza, K.J.N.S.; Ferreira, J.B.; Zampar, A.; Ono, E.A.; Affonso, E.G. 2018. Soybean meal in diets for juvenile of pirarucu. Boletim do Instituto de Pesca, 44(3): e318. http://dx.doi.org/10.20950/1678-2305.2018.318.
Cipriano, F.S.; Lima, K.S.; Passinato, E.B.; Jesus, R.M.; Magalhães-Junior, F.O.; Tonini, W.C.T.; Braga, L.G.T. 2015. Apparent digestibility of energetic ingredients by pirarucu juveniles, Arapaima gigas (Schinz, 1822). Latin American Journal of Aquatic Research, 43: 786-791.
Cipriano, F.S.; Lima, K.S.; Souza, R.H.B.; Tonini, W.C.T.; Passinato, E.B.; Braga, L.G.T. 2016. Digestibility of animal and vegetable protein ingredients by pirarucu juveniles (Arapaima gigas). Revista Brasileira de Zootecnia, 45(10): 581-586. http://dx.doi.org/10.1590/S1806-92902016001000001.
Corrêa, C.F.; Aguiar, L.H.; Lundstedt, L.M.; Moraes, G. 2007. Responses of digestive enzymes of tambaqui (Colossoma macropomum) to dietary cornstarch changes and metabolic inferences. Comparative Biochemistry and Physiology, 147(4): 857-862. http://dx.doi.org/10.1016/j.cbpa.2006.12.045. PMid:17490905.
Davies, S.J.; Laporte, J.; Gouveia, A.; Salim, H.S.; Woodgate, S.M.; Hassaan, M.S.; El-Haroun, E.R Davies, S.J.; Laporte, J.; Gouveia, A.; Salim, H.S.; Woodgate, S.L.; Hassan, M.S. 2019. Validation of processed animal proteins (mono-PAPS) in experimental diets for juvenile gilthead sea bream (Sparus aurata L.) as primary fish meal replacers within a European perspective. Aquaculture Nutrition, 25(1): 225-238. http://dx.doi.org/10.1111/anu.12846.
Del Risco, M.; Velásquez, J.; Sandoval, M.; Padilla, P.; Mori-Pinedo, L.; Chu-Koo, F. 2008. Efecto de três niveles de proteína dietaria em el crecimiento de juveniles de paiche, Arapaima gigas (Shinz, 1822). Folia Amazónica, 17(1): 29-37.
Diógenes, A.F.; Basto, A.; Estevão-Rodrigues, T.T.; Moutinho, S.A.; Aires, T.; Oliva-Teles, A.; Peres, H. 2019. Soybean meal replacement by corn distillers dried grains with solubles (DDGS) and exogenous non-starch polysaccharidases supplementation in diets for gilthead sabbream (Sparus aurata) juveniles. Aquaculture (Amsterdam, Netherlands), 500: 435-442. http://dx.doi.org/10.1016/j.aquaculture.2018.10.035.
Drumond, G.V.F.; Caixeiro, A.P.A.; Tavares-Dias, M.; Marcon, J.L.; Affonso, E.G. 2010. Características bioquímicas e hematológicas do pirarucu Arapaima gigas Schinz, 1822 (Arapaimidae) de cultivo semi-intensivo na Amazônia. Acta Amazonica, 40(3): 591-596. http://dx.doi.org/10.1590/S0044-59672010000300020.
Einen, O.; Roem, A.J. 1997. Dietary protein/energy ratios for Atlantic salmon in relation to fish size: growth, feed utilization and slaughter quality. Aquaculture Nutrition, 3: 115-126.
El-Sayed, A.M.; Dickson, M.W.; El-Naggar, G.O. 2015. Value chain analysis of the aquaculture feed sector in Egypt. Aquaculture (Amsterdam, Netherlands), 437: 92-101. http://dx.doi.org/10.1016/j.aquaculture.2014.11.033.
Engin, K.; Carter, C.G. 2001. Ammonia and urea excretion rates of juvenile Australian short-finned eel (Anguilla australis australis) as influenced by dietary protein level. Aquaculture (Amsterdam, Netherlands), 194: 123-136.
FAO í Food and Agriculture Organization of the United Nations. 2018. The state of world fisheries and aquaculture. Roma: FAO. 227p.
Hatlen, B.; Grisdale-Helland, B.; Helland, S.J. 2005. Growth, feed utilization and body composition in two size groups of Atlantic halibut (Hippoglossus hippoglossus) fed diets differing in protein and carbohydrate content. Aquaculture (Amsterdam, Netherlands), 249(1-4): 401-408. http://dx.doi.org/10.1016/j.aquaculture.2005.03.040.
Ituassú, D.R.; Pereira-Filho, M.; Roubach, R.; Crescêncio, R.; Cavero, B.A.; Gandra, A.L. 2005. Níveis de proteína bruta para juvenis de pirarucu. Pesquisa Agropecuária Brasileira, 40: 255-259.
Jiang, S.; Wu, X.; Li, W.; Wu, M.; Luo, Y.; Lu, S.; Lin, H. 2015. Effects of dietary protein and lipid levels on growth, feed utilization, body and plasma biochemical compositions of hybrid grouper (Epinephelus lanceolatus ââ„¢"š í"” Epinephelus fuscoguttatus ♀) juveniles. Aquaculture (Amsterdam, Netherlands), 446: 148-155. http://dx.doi.org/10.1016/j.aquaculture.2015.04.034.
Kabir, K.A.; Verdegem, M.C.J.; Verreth, J.A.J.; Phillips, M.J.; Schrama, J.W. 2019. Effect of dietary protein to energy ratio, stocking density and feeding level on performance of Nile tilapia in pond aquaculture. Aquaculture (Amsterdam, Netherlands), 511: 634200. http://dx.doi.org/10.1016/j.aquaculture.2019.06.014.
Lacroix, M.; Gaudichon, C.; Martin, A.; Morens, C.; Mathe, V.; Tome, D.; Huneau, J.F. 2004. A long term high-protein diet markedly reduces adipose tissue without major side effects in Wistar male rats. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 287(4): R934-R942. http://dx.doi.org/10.1152/ajpregu.00100.2004. PMid:15155276.
Lee, H.M.; Cho, K.C.; Lee, J.E.; Yang, S.G. 2001. Dietary protein requirement of juvenile giant croaker, Nibea japonica Temminck and Schlegel. Aquaculture Research, 32: 112-118. http://dx.doi.org/10.1046/j.1355-557x.2001.00050.x.
Luo, L.; Xue, M.; Vachot, C.; Geurden, I.; Kaushik, S. 2014. Dietary medium chain fatty acids from coconut oil have little effects on postprandial plasma metabolite profiles in rainbow trout (Oncorhynchus mykiss). Aquaculture (Amsterdam, Netherlands), 420í 421: 24-31.
Magalhães-Junior, F.O.; Santos, M.J.M.; Allaman, I.B.; Soares-Junior, I.J.; Silva, R.F.; Braga, L.G.T. 2017. Digestible protein requirement of pirarucu juveniles (Arapaima gigas) reared in outdoor aquaculture. The Journal of Agricultural Science, 9(9): 114-122. http://dx.doi.org/10.5539/jas.v9n9p114.
Mikkelsen, P.B.; Toubro, S.; Astrup, A. 2000. Effect of fat reduced diets on 24 h energy expenditure: comparisons between animal protein, vegetable protein and carbohydrate. The American Journal of Clinical Nutrition, 72(5): 1135-1141. PMid:11063440.
Oliva-Teles, A. 2012. Nutrition and health of aquaculture fish. Journal of Fish Diseases, 35(2): 83-108. http://dx.doi.org/10.1111/j.1365-2761.2011.01333.x. PMid:22233511.
Oliveira, E.G.; Pinheiro, A.B.; Oliveira, V.Q.; Silva, A.R.M.; Moraes, M.G.; Rocha, Í.R.C.B.; Sousa, R.R.; Costa, F.H.F. 2012. Effects of stocking density on the performance of juvenile pirarucu (Arapaima gigas) in cages. Aquaculture (Amsterdam, Netherlands), 370-371: 96-101. http://dx.doi.org/10.1016/j.aquaculture.2012.09.027.
Ono, E.A.; Nunes, E.S.S.; Cedano, J.C.C.; Pereira-Filho, M.; Roubach, R. 2008. Digestibilidade aparente de dietas práticas com diferentes relações energia:protéina em juvenis de pirarucu. Pesquisa Agropecuária Brasileira, 43(2): 249-254. http://dx.doi.org/10.1590/S0100-204X2008000200014.
Rawles, S.D.; Green, B.W.; McEntire, M.E.; Gaylord, T.G.; Barrows, F.T. 2018. Reducing dietary protein in pond production of hybrid striped bass (Morone chrysopsí"”M. saxatilis): Effects on fish performance and water quality dynamics. Aquaculture (Amsterdam, Netherlands), 490: 217-227. http://dx.doi.org/10.1016/j.aquaculture.2018.01.045.
Sagada, G.; Chen, J.; Shen, B.; Huang, A.; Sun, L.; Jiang, J.; Jin, C. 2017. Optimizing protein and lipid levels in practical diet for juvenile northern snakehead fish (Channa argus). Animal Nutrition, 3: 156-163. https://doi.org/10.1016/j.aninu.2017.03.003.
Salze, G.P.; Davis, D.A. 2015. Taurine: a critical nutrient for future fish feeds. Aquaculture (Amsterdam, Netherlands), 437: 215-229. http://dx.doi.org/10.1016/j.aquaculture.2014.12.006.
Shah-Alam, M.; Watanabe, W.O.; Carroll, P.M. 2008. Dietary protein requirements of juvenile black sea bass, Centropristis striata. Journal of the World Aquaculture Society, 39: 656-663.
Sioli, H. 1985. Amazônia: Fundamentos da ecologia da maior região de florestas tropicais. 1º Ed. Petrópolis: Editora Vozes Ltda. 69p.
Tu, Y.; Xie, S.; Han, D.; Yang, Y.; Jin, J.; Zhu, X. 2015. Dietary arginine requirement for gibel carp (Carassis auratus gibelio var.CAS III) reduces with fish size from 50 g to 150 g associated with modulation of genes involved in TOR signaling pathway. Aquaculture (Amsterdam, Netherlands), 449: 37-47. http://dx.doi.org/10.1016/j.aquaculture.2015.02.031.
Tuan, L.A.; Williams, K.C. 2007. Optimum dietary protein and lipid specifications for juvenile malabar grouper (Epinephelus malabaricus). Aquaculture (Amsterdam, Netherlands), 267: 129-138.
Vieira, V.P.; Inoue, L.A.K.; Moraes, G. 2005. Metabolic responses of matrinxã (Brycon cephalus) to dietary protein level. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 140(3): 337-342. http://dx.doi.org/10.1016/j.cbpb.2005.01.018. PMid:15792599.
Wang, J.T.; Han, T.; Li, X.Y.; Yang, Y.X.; Yang, M.; Hu, S.X.; Jiang, Y.D.; Harpaz, S. 2017. Effects of dietary protein and lipid levels with different protein-to-energy ratios on growth performance, feed utilization and body composition of juvenile red-spotted grouper, Epinephelus akaara. Aquaculture Nutrition, 1(1): 1-9. http://dx.doi.org/10.1111/anu.12467.
Wicks, B.J.; Randall, D.J. 2002. The effect of feeding and fasting on ammonia toxicity in juvenile rainbow trout, Oncorhynchus mykiss. Aquatic Toxicology (Amsterdam, Netherlands), 59(1-2): 71-82. PMid:12088634.
Wu, X.; Castillo, S.; Rosales, M.; Burns, A.; Mendoza, M.; Gatlin 3rd, D.M. 2015. Relative use of dietary carbohydrate, non-essential amino acids, and lipids for energy by hybrid striped bass, Morone chrysops ♀ í"” M. saxatilis ââ„¢"š. Aquaculture (Amsterdam, Netherlands), 435: 116-119. http://dx.doi.org/10.1016/j.aquaculture.2014.09.030.
Yamamoto, T.; Shima, T.; Furuita, H.; Suzuki, N. 2002. Influence of dietary fat level and whole-body adiposity on voluntary energy intake by juvenile rainbow trout Oncorhynchus mykissi (Walbaun) under selffeeding conditions. Aquaculture Research, 33(9): 715-723. http://dx.doi.org/10.1046/j.1365-2109.2002.00708.x.
Yang, S.D.; Liou, C.H.; Liu, F.G. 2002. Effects of dietary protein level on growth performance, carcass composition and ammonia excretion in juvenile silver perch (Bidyanus bidyanus). Aqualculture, 213(1-4): 363-372. http://dx.doi.org/10.1016/S0044-8486(02)00120-5.
Zhang, Y.; Sun, Z.; Wang, A.; Ye, C.; Zhu, X. 2017. Effects of dietary protein and lipid levels on growth, body and plasma biochemical composition and selective gene expression in liver of hybrid snakehead (Channa maculata ♀ í"” Channa argus ââ„¢"š) fingerlings. Aquaculture (Amsterdam, Netherlands), 468: 1-9.