Filters and media used in aquaponic system filtration: A systematic review
DOI:
https://doi.org/10.20950/1678-2305/bip.2024.51.e959Keywords:
Aquaponics, Filtration, Sustainability, Nutrient recycling, Filtration mediaAbstract
of different types of filters, including mechanical, biological, and bacteriological, as well as the application of various filtration media, such as bio-balls, sand, and natural materials (e.g., açaí seeds and biochar). The results indicated an increasing trend in publications on this topic, with the United States of America and Malaysia leading the research in this field. While American studies focus on parameters such as hydraulic loading rate, research in Malaysia emphasizes the use of sand as a filtering medium for solid and nutrient removal. The analyzed media range from simple substrates, such as gravel and expanded clay, to more advanced technologies, including hollow fiber membranes and biochar, demonstrating the diversity of approaches in optimizing filtration in aquaponics. This review highlights that the appropriate selection of filters and media plays a key role in the sustainability and efficiency of aquaponic systems, directly influencing water quality, waste removal, and environmental stability in production settings.
References
Alarcón-Silvas, S. G., León-Cañedo, J. A., Fierro-Sañudo, J. F., Ramírez-Rochín, J., Fregoso-López, M. G., Frías-Espericueta, M. G., Osuna-Martínez, C. C., & Páez-Osuna, F. (2021). Water quality, water usage, nutrient use efficiency and growth of shrimp Litopenaeus vannamei in an integrated aquaponic system with basil Ocimum basilicum. Aquaculture, 543, 737023. https://doi.org/10.1016/j.aquaculture.2021.737023
Ali, T. E., Kadour, O. A., & Said, M. M. (2024). Effects of protein skimmer inclusion in an integrated aquaponic system between the red tilapia hybrid (Florida strain) and mint (Mentha spicata). Egyptian Journal of Aquatic Biology and Fisheries, 28(1), 1171-1193. https://doi.org/10.21608/ejabf.2024.339902
Amin, M., Agustono, A., Ali, M., Prayugo, P., & Hum, N. N. M. F. (2023). Isolation and screening of indigenous nitrifying bacteria to enhance nutrient recovery in an aquaponics system. Journal of the World Aquaculture Society, 54(6), 1607-1623. https://doi.org/10.1111/jwas.12970
Armenta-Bojórquez, A. D., Valenzuela-Castañeda, A. R., Fitzsimmons, K., López-Alvarez, E. S., Rodríguez-Quiroz, G., & Valenzuela-Quiñónez, W. (2021). Pacific white shrimp and tomato production using water effluents and salinity-tolerant grafted plants in an integrated aquaponic production system. Journal of Cleaner Production, 278, 124064. https://doi.org/10.1016/j.jclepro.2020.124064
Aslanidou, M., Elvanidi, A., Mourantian, A., Levizou, E., Mente, E., & Katsoulas, N. (2023). Nutrients use efficiency in coupled and decoupled aquaponic systems. Horticulturae, 9(10), 1077. https://doi.org/10.3390/horticulturae9101077
Bartelme, R. P., Smith, M. C., Sepulveda-Villet, O. J., & Newton, R. J. (2019). Component micro environments and system biogeography structure microorganism distributions in recirculating aquaculture and aquaponic systems. mSphere, 4(4), e00143-19. https://doi.org/10.1128/mSphere.00143-19
Boaventura, T. P., Miranda-Filho, K. C., Oréfice, R. L., & Luz, R. K. (2018). Influence of porosity of low-density polyethylene media on the maturation process of biofilters used in recirculating aquaculture systems. Aquaculture International, 26(4), 1035-1049. https://doi.org/10.1007/s10499-018-0266-y
Boxman, S. E., Nystrom, M., Ergas, S. J., Main, K. L., & Trotz, M. A. (2017). Effect of support medium, hydraulic loading rate and plant density on water quality and growth of halophytes in marine aquaponic systems. Aquaculture Research, 48(5), 2463-2477. https://doi.org/10.1111/are.13083
Castillo-Castellanos, D., Zavala-Leal, I., Ruiz-Velazco, J. M. J., Radilla-García, A., Nieto-Navarro, J. T., Romero-Bañuelos, C. A., & González-Hernández, J. (2016). Implementation of an experimental nutrient film technique-type aquaponic system. Aquaculture International, 24, 637-646. https://doi.org/10.1007/s10499-015-9954-z
Chu, Y. T., & Brown, P. B. (2021). Evaluation of Pacific whiteleg shrimp and three halophytic plants in marine aquaponic systems under three salinities. Sustainability, 13(1), 269. https://doi.org/10.3390/su13010269
Da Silva Alves, L., Barbosa, L. J. C., de Almeira Moreira, B. R., Cruz, V. H., Takahashi, L. S., Miasaki, C. T., & Lopes, P. R. M. (2024). Lettuce agronomic yield in aquaponic system under different tilapia storage densities. Científica, 52. https://doi.org/10.5016/1984-5529.2024.v52.1418
Dawood, M. A., Gewaily, M., & Sewilam, H. (2023). Combined effects of water salinity and ammonia exposure on the antioxidative status, serum biochemistry, and immunity of Nile tilapia (Oreochromis niloticus). Fish Physiology and Biochemistry, 49, 1461-1477. https://doi.org/10.1007/s10695-023-01267-5
Deviona, A., Sari, E. I., Yusuf, Y., & Pardi, H. (2020). The effectiveness of aquaponic compared to modified conventional aquaculture for improved of ammonia, nitrite, and nitrate. Rasayan Journal of Chemistry, 13(1), 1-10. https://doi.org/10.31788/RJC.2020.1315427
Dorick, J. M., Macarisin, D., Dunn, L., & Dev Kumar, G. (2023). Effect of aquaponic water and substratum material on biofilm formation by Aeromonas hydrophila. International Journal of Food Microbiology, 404, 110316. https://doi.org/10.1016/j.ijfoodmicro.2023.110316
Drennan II, D. G., Hosler, K. C., Francis, M., Weaver, D., Aneshansley, E., Beckman, G., Johnson, C. H., & Cristina, C. M. (2006). Standardized evaluation and rating of biofilters: II. Manufacturer’s and user’s perspective. Aquacultural Engineering, 34(3), 403-416. https://doi.org/10.1016/j.aquaeng.2005.07.001
Dusci, J. C., Hager, J., Coyle, S., & Tidwell, J. (2022). Evaluation of freshwater prawn (Macrobrachium rosenbergii) for biological solids control in raft aquaponic systems and the protective effectiveness of root guards. Journal of the World Aquaculture Society, 53(1), 290-308. https://doi.org/10.1111/jwas.12856
Eck, M., Sare, A. R., Massart, S., Schmautz, Z., Junge, R., Smits, T. H. M., & Jijakli, M. H. (2019). Exploring bacterial communities in aquaponic systems. Water, 11(2), 260. https://doi.org/10.3390/w11020260
Elumalai, S. D., Shaw, A. M., Pattillo, D. A., Currey, C. J., Rosentrater, K. A., & Xie, K. (2017). Influence of UV treatment on the food safety status of a model aquaponic system. Water, 9(1), 27. https://doi.org/10.3390/w9010027
Emparanza, E. J. M. (2009). Problems affecting nitrification in commercial RAS with fixed-bed biofilters for salmonids in Chile. Aquacultural Engineering, 41(2), 91-96. https://doi.org/10.1016/j.aquaeng.2009.06.010
Endut, A., Jusoh, A., Ali, N., Wan Nik, W. B., & Hassan, A. (2009). Effect of flow rate on water quality parameters and plant growth of water spinach (Ipomoea aquatica) in an aquaponic recirculating system. Desalination and Water Treatment, 5(1-3), 19-28. https://doi.org/10.5004/dwt.2009.559
Endut, A., Lananan, F., Abdul Hamid, S. H., Jusoh, A., & Wan Nik, W. N. (2016). Balancing of nutrient uptake by water spinach (Ipomoea aquatica) and mustard green (Brassica juncea) with nutrient production by African catfish (Clarias gariepinus) in scaling aquaponic recirculation system. Desalination and Water Treatment, 57(60), 29531-29540. https://doi.org/10.1080/19443994.2016.1184593
Espinal, C. A., & Matulić, D. (2019). Recirculating aquaculture technologies. In S. Goddek, A. Joyce, B. Kotzen & G. M. Burnell (eds.), Aquaponics food production systems (pp. 35-76). Springer. https://doi.org/10.1007/978-3-030-15943-6_3
Estrada-Perez, N., Hernandez-Llamas, A., Ruiz-Velazco, J. M. J., Zavala-Leal, I., Romero-Bañuelos, C. A., Cruz-Crespo, E., Juárez-Rossete, C., Domínguez-Ojeda, D., & Campos-Mendoza, A. (2018). Stochastic modelling of aquaponic production of tilapia (Oreochromis niloticus) with lettuce (Lactuca sativa) and cucumber (Cucumis sativus). Aquaculture Research, 49(12), 3723-3734. https://doi.org/10.1111/are.13840
Estrada-Perez, N., Zavala-Leal, I., González-Hermoso, J. P., & Ruiz-Velazco, J. M. J. (2024). Comparing lettuce and cucumber production using hydroponics and aquaponic (tilapia) systems. Latin American Journal of Aquatic Research, 52(3), 459-472. https://doi.org/10.3856/vol52-issue3-fulltext-3127
Fawzy, E., Hassanien, R. H. E., Mansour, G., & Suloma, A. (2024). Impact of organic waste digestion on sustainability of tilapia-basil decoupled aquaponic system. Egyptian Journal of Aquatic Biology & Fisheries, 28(1), 185-200. https://doi.org/10.21608/ejabf.2024.337347
Gao, X., Zhang, H., Xu, Y., Ni, Q., Zhang, Y., Tan, H., & Gu, C. (2022). Effects of humic acid on the nitrogen utilization efficiency and microbial communities in aquaponic systems. Aquaculture, 547, 737475. https://doi.org/10.1016/j.aquaculture.2021.737475
Gebauer, R., Lehman, L., Monsees, H., Rennert, B., Mráz, J., & Kloas, W. (2022). Nitrogen recovery in a decoupled aquaponic system with lamellar settler and trickling biofilter: Implications for system management. Aquaculture International, 30, 2043-2058. https://doi.org/10.1007/s10499-022-00888-6
Goda, A. M. A. S., Aboseif, A. M., Taha, M. K. S., Mohammady, E. Y., Aboushabana, N. M., Nazmi, H. M., Zaher, M. M., Aly, H. A., El-Okaby, M. A. S., Ibáñez Otazua, N., & Ashour, M. (2024). Optimizing nutrient utilization, hydraulic loading rate, and feed conversion ratios through freshwater IMTA-aquaponic and hydroponic systems as an environmentally sustainable aquaculture concept. Scientific Reports, 14, 14878. https://doi.org/10.1038/s41598-024-63919-7
Goddek, S., Delaide, B., Mankasingh, U., Ragnarsdottir, K. V., Jijakli, H., & Thorarinsdottir, R. (2015). Challenges of sustainable and commercial aquaponics. Sustainability, 7(4), 4199-4224. https://doi.org/10.3390/su7044199
Goddek, S., & Keesman, K. J. (2020). Improving nutrient and water use efficiencies in multi-loop aquaponics systems. Aquaculture International, 28, 2481-2490. https://doi.org/10.1007/s10499-020-00600-6
Graber, A., & Junge, R. (2009). Aquaponic systems: Nutrient recycling from fish wastewater by vegetable production. Desalination, 246(1-3), 147-156. https://doi.org/10.1016/j.desal.2008.03.048
Gutierrez-Wing, M. T., & Malone, R. F. (2006). Biological filters in aquaculture: trends and research directions for freshwater and marine applications. Aquacultural Engineering, 34(3), 163-171. https://doi.org/10.1016/j.aquaeng.2005.08.003
Hamid, S. H. A., Din, W. N. S., Lananan, F., & Endut, A. (2024). Growth performance of African catfish (Clarias gariepinus) in aquaponic systems with varying densities of Vietnamese coriander (Persicaria odorata). Chemosphere, 363, 142998. https://doi.org/10.1016/j.chemosphere.2024.142998
Hamid, S. H. A., Lananan, F., Mohd Noor, N. A., & Endut, A. (2022). Physical filtration of nutrients utilizing gravelbased and lightweight expanded clay aggregate (LECA) as growing media in aquaponic recirculation system (ARS). Aquacultural Engineering, 98, 102261. https://doi.org/10.1016/j.aquaeng.2022.102261
Helmy, H. S., Abd Elhay, Y. B., & Salem, A. (2023). Effect of magnetic water on the growth of the Nile tilapia and lettuce plant in the aquaponic system. Egyptian Journal of Aquatic Biology & Fisheries, 27(4), 213-228. https://doi.org/10.21608/ejabf.2023.309143
Ji, M., Gao, H., Diao, L., Zhang, J., Liang, S., & Hu, Z. (2022). Environmental impacts of antibiotics addition to algalbacterial-based aquaponic system. Applied Microbiology and Biotechnology, 106, 3777-3786. https://doi.org/10.1007/s00253-022-11944-9
Karimanzira, D., Keesman, K. J., Kloas, W., Baganz, D., & Rauschenbach, T. (2016). Dynamic modeling of the INAPRO aquaponic system. Aquacultural Engineering, 75, 29-45. https://doi.org/10.1016/j.aquaeng.2016.10.004
Khiari, Z., Kaluthota, S., & Savidov, N. (2020). Phosphorus delays the onset of nitrification during aerobic digestion of aquaculture/aquaponic solid waste. Biochemical Engineering Journal, 155, 107493. https://doi.org/10.1016/j.bej.2020.107493
Kim, K. H., Shawon, M. R. A., Yoon, Y. J., & Choi, K. Y. (2023). Effect of inorganic substrates on the water quality and growth of Kalanchoe blossfeldiana in an aquaponic system. Horticultural Science and Technology, 41(2), 188-201. https://doi.org/10.7235/HORT.20230018
Kloas, W., Groß, R., Baganz, D., Graupner, J., Monsees, H., Schmidt, U., Staaks, G., Suhl, J., Tschirner, M., Wittstock, B., Wuertz, S., Zikova, A., & Rennert, B. (2015). A new concept for aquaponic systems to improve sustainability, increase productivity, and reduce environmental impacts. Aquaculture Environment Interactions, 7, 179-192. https://doi.org/10.3354/aei00146
Lam, S. S., Ma, N. L., Jusoh, A., & Ambak, M. A. (2014). A study on the optimal tank design and feed type to the growth of marble goby (Oxyeleotris marmorata Bleeker) and reduction of waste in a recirculating aquaponic system. Desalination and Water Treatment, 52(4-6), 1044-1053. https://doi.org/10.1080/19443994.2013.826854
Lam, S. S., Ma, N. L., Jusoh, A., & Ambak, M. A. (2015). Biological nutrient removal by recirculating aquaponic system: Optimization of the dimension ratio between the hydroponic & rearing tank components. International Biodeterioration & Biodegradation, 102, 107-115. https://doi.org/10.1016/j.ibiod.2015.03.012
Lennard, W., & Goddek, S. (2019). Aquaponics: the basics. In S. Goddek, A. Joyce, B. Kotzen & G. M. Burnell (Eds.), Aquaponics food production systems (pp. 113-143). Springer. https://doi.org/10.1007/978-3-030-15943-6_5
Lobanov, V. P., Combot, D., Pelissier, P., Labbé, L., & Joyce, A. (2021). Improving plant health through nutrient remineralization in aquaponic systems. Frontiers in Plant Science, 12, 683690. https://doi.org/10.3389/fpls.2021.683690
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The PRISMA Group (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097
Monsees, H., Kloas, W., & Wuertz, S. (2017). Decoupled systems on trial: Eliminating bottlenecks to improve aquaponic processes. PLoS One, 12(9), e0183056. https://doi.org/10.1371/journal.pone.0183056
Mulay, B. N., & Reddy, K. R. (2021). Study of biofilter planted with basil for removal of ammonia in aquaponic water. Civil and Environmental Engineering, 17(1), 242-251. https://doi.org/10.2478/cee-2021-0025
Nascimento, E. T. S., Pereira Junior, R. F., Reis, V. S., Gomes, B. J. F., Owatari, M. S., Luz, R. K., Melo, N. F. A. C., Santos, M. L. S., Palheta, G. D. A., & Sterzelecki, F. C. (2023). Production of late seedlings of açai (Euterpe oleraceae) in an aquaponic system with tambaqui (Colossoma macropomum, Curvier, 1818). Agriculture, 13(8), 1581. https://doi.org/10.3390/agriculture13081581
Natividade, J., Sterzelecki, F. C., Fazzi-Gomes, P. F., Sena, M. C., Owatari, M. S., De Melo, N. F. A. C., Santos, M. L. S., Luz, R. K., & Palheta, G. D. A. (2024). Nitrogenous compounds, fish and plant growth were impacted by hydraulic loading rates on the aquaponic bed with açai seed (Euterpe oleracea). Journal of Water Process Engineering, 61, 105292. https://doi.org/10.1016/j.jwpe.2024.105292
Pérez-Urrestarazu, L., Lobillo-Eguíbar, J., Fernández-Cañero, R., & Fernández-Cabanás, V. M. (2019). Food safety concerns in urban aquaponic production: Nitrate contents in leafy vegetables. Urban Forestry & Urban Greening, 44, 126431. https://doi.org/10.1016/j.ufug.2019.126431
Pinheiro, I., Arantes, R., do Espírito Santo, C. M., Vieira, F. N., Lapa, K. R., Gonzaga, L. V., Fett, R., Barcelos Oliveira, J. L., & Seiffert, W. Q. (2017). Production of the halophyte Sarcocornia ambigua and Pacific white shrimp in an aquaponic system with biofloc technology. Ecological Engineering, 100, 261-267. https://doi.org/10.1016/j.ecoleng.2016.12.024
Prastowo, B. W., Lestari, I. P., Agustini, N. W. S., Priadi, D., Haryati, Y., Jufri, A., Deswina, P., Mei Adi, E. B., & Zulkarnaen, I. (2024). Bacterial communities in aquaponic systems: Insights from red onion hydroponics and koi biological filters. Case Studies in Chemical and Environmental Engineering, 10, 100968. https://doi.org/10.1016/j.cscee.2024.100968
Ravani, M., Chatzigeorgiou, I., Monokrousos, N., Giantsis, I. A., & Ntinas, G. K. (2024). Life cycle assessment of a hightech vertical decoupled aquaponic system for sustainable greenhouse production. Frontiers in Sustainability, 5, 1422200. https://doi.org/10.3389/frsus.2024.1422200
Rusten, B., Eikebrokk, B., Ulgenes, Y., & Lygren, E. (2006). Design and operations of the Kaldnes moving bed biofilm reactors. Aquacultural Engineering, 34(3), 322-331. https://doi.org/10.1016/j.aquaeng.2005.04.002
Schmautz, Z., Espinal, C. A., Bohny, A. M., Rezzonico, F., Junge, R., Frossard, E., & Smits, T. H. M. (2021a). Environmental parameters and microbial community profiles as indication towards microbial activities and diversity in aquaponic system compartments. BMC Microbiology, 21, 12. https://doi.org/10.1186/s12866-020-02075-0
Schmautz, Z., Espinal, C. A., Smits, T. H. M., Frossard, E., & Junge, R. (2021b). Nitrogen transformations across compartments of an aquaponic system. Aquacultural Engineering, 92, 102145. https://doi.org/10.1016/j.aquaeng.2021.102145
Setiadi, E., Taufik, I., Widyastuti, Y. R., Ardi, I., & Puspaningsih, D. (2019). Improving productivity and water quality of catfish (Clarias sp.) cultured in an aquaponic ebb-tide system using different filtration. IOP Conference Series: Earth and Environmental Science, 236(1), 012026. https://doi.org/10.1088/1755-1315/236/1/012026
Shaw, C., Knopf, K., Klatt, L., Marin Arellano, G., & Kloas, W. (2023). Closing nutrient cycles through the use of system-internal resource streams: Implications for circular multitrophic food production systems and aquaponic feed development. Sustainability, 15(9), 7374. https://doi.org/10.3390/su15097374
Silva, L., Gasca-Leyva, E., Escalante, E., Fitzsimmons, K. M., & Valdés Lozano, D. (2015). Evaluation of biomass yield and water treatment in two aquaponic systems using the dynamic root floating technique (DRF). Sustainability, 7(11), 15384-15399. https://doi.org/10.3390/su71115384
Sirakov, I. (2019). The influence of two different light intensities on cleaning capacity and productivity in aquaponic filter part of biological filtration in recirculation aquaculture system. Aquaculture, Aquarium, Conservation & Legislation, 12(5), 1746-1754. Retrieved from http://www.bioflux.com.ro/aacl
Somerville, C., Cohen, M., Pantanella, E., Stankus, A., & Lovatelli, A. (2014). Small-scale aquaponic food production: integrated fish and plant farming. FAO Fisheries and Aquaculture Technical Paper, (589), I. Retrieved from https://www.fao.org/3/i4021e/i4021e.pdf
Sterzelecki, F. C., de Jesus, A. M., Jorge, J. L. C., Tavares, C. M., de Souza, A. J. N., Santos, M. L. S., Takata, R., de Melo, N. F. A. C., & Palheta, G. D. A. (2022). Açai palm (Euterpe oleracea) seed for aquaponic media and seedling production. Aquacultural Engineering, 98, 102270. https://doi.org/10.1016/j.aquaeng.2022.102270
Su, M. H., Azwar, E., Yang, Y. F., Sonne, C., Yek, P. N. Y., Liew, R. K., Cheng, C. K., Show, P. L., & Lam, S. S (2020). Simultaneous removal of toxic ammonia and lettuce cultivation in aquaponic system using microwave pyrolysis biochar. Journal of Hazardous Materials, 396, 122610. https://doi.org/10.1016/j.jhazmat.2020.122610
Suhl, J., Dannehl, D., Baganz, D., Schmidt, U., & Kloas, W. (2018). An innovative suction filter device reduces nitrogen loss in double recirculating aquaponic systems. Aquacultural Engineering, 82, 63-72. https://doi.org/10.1016/j.aquaeng.2018.06.008
Summerfelt, S. T. (2006). Design and management of conventional fluidized-sand biofilters. Aquacultural Engineering, 34(3), 275-302. https://doi.org/10.1016/j.aquaeng.2005.08.010
Teng, L., Watari, T., Fujimoto, T., Sato, N., Sato, T., Enoki, Y., Adlin, N., Hatamoto, M., & Yamaguchi, T (2024). Performance comparison of down-flow hanging sponge reactor and moving bed bioreactor for aquaponic systems. Bioresource Technology Reports, 28, 101963. https://doi.org/10.1016/j.biteb.2024.101963
Tetreault, J., Fogle, R. L., & Guerdat, T. (2023). Scalable coupled aquaponics design: Lettuce and tilapia production using a parallel unit process approach. Frontiers in Sustainable Food Systems, 7, 1059066. https://doi.org/10.3389/fsufs.2023.1059066
Thorarinsdottir, R. (2015). Aquaponics guidelines. University of Iceland. https://doi.org/10.13140/RG.2.1.4975.6880
Timmons, M. B., Guerdat, T., & Vinci, B. J. (2018). Recirculating aquaculture (4th ed.). Ithaca.
Tsoumalakou, E., Mente, E., Kormas, K. A., Katsoulas, N., Vlahos, N., Kapsis, P., & Levizou, E. (2022). Precise monitoring of lettuce functional responses to minimal nutrient supplementation identifies aquaponic system’s nutrient limitations and their time-course. Agriculture, 12(8), 1278. https://doi.org/10.3390/agriculture12081278
Vlahos, N., Levizou, E., Stathopoulou, P., Berillis, P., Antonopoulou, E., Bekiari, V., Krigas, N., Kormas, K., & Mente, E. (2019). An experimental brackish aquaponic system using juvenile gilthead sea bream (Sparus aurata) and rock samphire (Crithmum maritimum). Sustainability, 11(18), 4820. https://doi.org/10.3390/su11184820
Wang, C. Y., Chang, C. Y., Chien, Y. H., & Lai, H. T. (2016). The performance of coupling membrane filtration in recirculating aquaponic system for tilapia culture. International Biodeterioration & Biodegradation, 107, 21-30. https://doi.org/10.1016/j.ibiod.2015.10.016
Wongkiew, S., Popp, B. N., & Khanal, S. K. (2018). Nitrogen recovery and nitrous oxide (N₂O) emissions from aquaponic systems: Influence of plant species and dissolved oxygen. International Biodeterioration & Biodegradation, 134, 117-126. https://doi.org/10.1016/j.ibiod.2018.08.008
Wongkiew, S., Popp, B. N., Kim, H. J., & Khanal, S. K. (2017). Fate of nitrogen in floating-raft aquaponic systems using natural abundance nitrogen isotopic compositions. International Biodeterioration & Biodegradation, 125, 24-32. https://doi.org/10.1016/j.ibiod.2017.08.006
Xia, T., Chen, A., Zi, Y., Zhang, Y., Xu, Q., Gao, Y., & Li, C. (2023). Performance of fish sludge solubilization and phototrophic bioconversion by purple phototrophic bacteria for nutrient recovery in aquaponic system. Waste Management, 171, 105-115. https://doi.org/10.1016/j.wasman.2023.08.016
Xu, Y., Shan, J., Gu, C., Gao, X., Zhang, Y., & Ni, Q. (2023). Constructing and operating synergy model of aquaponic system integrated with soil-based cultivation.Transactions of the Chinese Society of Agricultural Engineering, 39(2), 150-156. https://doi.org/10.11975/j.issn.1002-6819.202210085
Yang, T., & Kim, H. J. (2020a). Characterizing nutrient composition and concentration in tomato-, basil-, and lettuce-based aquaponic and hydroponic systems. Water, 12(5), 1259. https://doi.org/10.3390/w12051259
Yang, T., & Kim, H. J. (2020b). Effects of hydraulic loading rate on spatial and temporal water quality characteristics and crop growth and yield in aquaponic systems. Horticulturae, 6(1), 9. https://doi.org/10.3390/horticulturae6010009
Yep, B., & Zheng, Y. (2019). Aquaponic trends and challenges: A review. Journal of Cleaner Production, 228, 1586-1599. https://doi.org/10.1016/j.jclepro.2019.04.290
Zhang, H., Gao, Y., Shi, H., Lee, C. T., Hashim, H., Zhang, Z., Wu, W. M., & Li, C. (2020). Recovery of nutrients from fish sludge in an aquaponic system using biological aerated filters with ceramsite plus lignocellulosic material media. Journal of Cleaner Production, 258, 120886. https://doi.org/10.1016/j.jclepro.2020.120886
Zhu, C., Lin, Z., Fen, W., Jiajia, W., Xiang, Z., Kai, C., Yu, Z., Kelai, Z., Yelin, J., & Salin, K. R. (2024a). Suitability of coconut bran and biochar as a composite substrate for lettuce cultivation in aquaponic systems. Heliyon, 10(15), e35515. https://doi.org/10.1016/j.heliyon.2024.e35515
Zhu, Z., Yogev, U., Keesman, K. J., & Gross, A. (2024). Promoting circular economy: Comparison of novel coupled aquaponics with anaerobic digestion and conventional aquaponic systems on nutrient dynamics and sustainability. Resources, Conservation & Recycling, 208, 107716. https://doi.org/10.1016/j.resconrec.2024.107716
Zou, Y., Hu, Z., Zhang, J., Xie, H., Liang, S., Wang, J., & Yan, R. (2016). Attempts to improve nitrogen utilization efficiency of aquaponics through nitrifiers addition and filler gradation. Environmental Science and Pollution Research, 23(7), 6671-6679. https://doi.org/10.1007/s11356-015-5898-0
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Robson Silva de Lima, Juliano Silva Lima, Cibele Soares Pontes

This work is licensed under a Creative Commons Attribution 4.0 International License.







