EFEITO DE NANOPARTICULAS DE DIÓXIDO DE TITÂNIO SOBRE Oreochromis niloticus: METABOLISMO DE ROTINA E ALTERAÇÃO HISTOLÓGICA
DOI:
https://doi.org/10.20950/1678-2305.2018.343Palavras-chave:
Tilapia do Nilo, nanopartículas, consumo de oxigênio, excreção de amônia, brí¢nquias, fígadoResumo
Nanoparticulas de Dióxido de Tití¢nio (TiO2NPs) podem causar alterações nas espécies aquáticas expostas, em termos de consumo de oxigênio, excreção de amônia e funcionalidade de tecidos, portanto, o objetivo do presente estudo é avaliar os efeitos da exposição aguda a diferentes concentrações de TiO2NPs (0,1, 0,5, 1,0 e 2,5 mgL-1) sobre o metabolismo de rotina (consumo de oxigênio e excreção de amônia) e parí¢metros histológicos (branquiais e hepáticos) em Oreochromis niloticus. Após 24 horas, observamos um aumento no consumo de oxigênio de 2,36 e 3,23 vezes em grupos expostos a 1,0 e 2,5 mgL-1 de TiO2NPs respectivamente, bem como um aumento na excreção de amônia de 3,54, 4,0 e 4,82 vezes maior nos grupos expostos a 0,5, 1,0 e 2,5 mgL-1 de TiO2NPs respectivamente, em comparação com o grupo controle. A análise histológica mostrou, após 72 horas, alterações moderadas a severas tanto nas brí¢nquias quanto no fígado de peixes expostos a TiO2NPs em concentrações de 1,0 e 2,5 mgL-1, a gravidade e a ocorrência da alteração observada foram de grau 3 (alterações patológicas graves e extensas). Concluímos que a exposição í TiO2NPs da tilápia do Nilo causaram alteração no metabolismo de rotina e nos parí¢metros histológicos de uma maneira dose-dependente.
Referências
BARBER, D.S.; DENSLOW, N.D.; GRIFFITT, R.J.; MARTYNIUK, C.J. 2009 Sources, fate and effects of engineered nanomaterials in the aquatic environment. In: SAHU, S.C.; CASCIANO, D.A. Nanotoxicity, from in vitro models to health risks. Chichester: John Wiley & Sons. p. 227-245. http://dx.doi.org/10.1002/9780470747803.ch12.
BARBIERI, E.; CAMPOS-GARCIA, J.; MARTINEZ, D.S.T.; SILVA, J.R.M.C.; ALVES, O.L.; REZENDE, K.F.O. 2016 Histopathological Effects on Gills of Nile Tilapia (Oreochromis niloticus, Linnaeus, 1758) Exposed to Pb and Carbon Nanotubes. Microscopy and Microanalysis, 22(6): 1162-1169. http://dx.doi.org/10.1017/S1431927616012009. PMid:27998365.
BARBIERI, E.; FERREIRA, L.A.A. 2011 Effects of the organophosphate pesticide Folidol 600® on the freshwater fish, Nile Tilapia (Oreochromis niloticus). Pesticide Biochemistry and Physiology, 99(3): 209-214.
BARBIERI, E.; FERREIRA, A.C.; REZENDE, K.F.O. 2017a Cadmium effects on shrimp ammonia exetion (Farfantepenaeus paulensis) at differents temperatures and levels. Pan-American Journal of Aquatic Sciences, 12(3): 176-183.
BARBIERI, E.; RUIZ-HIDALGO, K.; REZENDE, K.F.O.; LEONARDO, A.F.G.; SABINO, F.P. 2017b Efectos del carbofuran en juveniles de Oreochromis niloticus en la toxicidad, metabólica de rutina y los parámetros hematológicos. Boletim do Instituto de Pesca, 43(4): 513-526. http://dx.doi.org/10.20950/1678-2305.2017v43n4p513.
CAMPOS-GARCIA, J.; MARTINEZ, D.S.T.; REZENDE, K.F.O.; SILVA, J.R.M.C.; ALVES, O.L.; BARBIERI, E. 2016 Histopathological alterations in the gills of Nile tilapia exposed to carbofuran and multiwalled carbon nanotubes. Ecotoxicology and Environmental Safety, 133(1): 481-488. http://dx.doi.org/10.1016/j.ecoenv.2016.07.041. PMid:27543744.
CERQUEIRA, C.C.; FERNANDES, M.N. 2002 Gill tissue recovery after copper exposure and blood parameter responses in the tropical fish, Prochilodus scrofa. Ecotoxicology and Environmental Safety, 52(2): 83-91. http://dx.doi.org/10.1006/eesa.2002.2164. PMid:12061823.CHEN, G.X.; LIU, X.Y.; SU, C.M. 2012 Distinct effects of humic acid on transport and retention of TiO2 rutile nanoparticles in saturated sand columns. Environmental Science & Technology, 46(13): 7142-7150. http://dx.doi.org/10.1021/es204010g. PMid:22681399.
CHEN, J.; DONG, X.; XIN, Y.; ZHAO, M. 2011 Effects of titanium dioxide nano-particles on growth and some histological parameters of zebrafish (Danio rerio) after a long-term exposure. Aquatic Toxicology, 101(3-4): 493-499. http://dx.doi.org/10.1016/j.aquatox.2010.12.004. PMid:21276475.DAMATO, M.;
DAMATO,M; BARBIERI, E. 2012 Estudo da Toxicidade aguda e alterações metabólicas provocadas pela exposição do Cádmio sobre o peixe Hyphessobrycon callistus utilizado como indicador de saúde ambiental. O Mundo da Saúde, 36(4): 574-581.
DINIZ, M.S.; DE MATOS, A.P.A.; LOURENí"¡O, J.; CASTRO, L.; PERES, I.; MENDONí"¡A, E.; PICADO, A. 2013 Liver alterations in two freshwater fish species (Carassius auratus and Danio rerio) following exposure to different TiO2 nanoparticle concentrations. Microscopy and Microanalysis, 19(5): 1131-1140. http://dx.doi.org/10.1017/S1431927613013238. PMid:23931156.
DOI, S.A.; COLLAí"¡O, F.L.; STURARO, L.G.R.; BARBIERI, E. 2012 Efeito do chumbo em nível de oxigênio e amônia no camarão rosa (Farfantepeneaus paulensis) em relação í salinidade. O Mundo da Saúde, 36(4): 594-601.
EVANS, D.H.; PIERMARINI, P.M.; CHOE, K.P. 2005 The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acidí base regulation, and excretion of nitrogenous waste. Physiological Reviews, 85(1): 97-177. http://dx.doi.org/10.1152/physrev.00050.2003. PMid:15618479.
FRY, F.E.J. 1971 The effect of environmental factors on the physiology of fish. In: HOAR, W.S.; RANDALL, D.J. Fish physiology. New York: Academic Press. p. 1-98. http://dx.doi.org/10.1016/S1546-5098(08)60146-6.
GARCIA-SANTOS, S.; FONTAÍNHAS-FERNANDES, A.; WILSON, J.M. 2006 Cadmium tolerance in the Nile tilapia (Oreochromis niloticus) following acute exposure: assessment of some ionoregulatory parameters. Environmental Toxicology, 21(1): 33-46. http://dx.doi.org/10.1002/tox.20152. PMid:16463259.
GIRARDELLO, F.; CUSTÓDIO LEITE, C.; VIANNA VILLELA, I.; SILVA MACHADO, M.; LUIZ MENDES JUCHEM, A.; ROESCH-ELY, M.; NEVES FERNANDES, A.; SALVADOR, M.; ANTONIO PíÅ GAS HENRIQUES, J. 2016 Titanium dioxide nanoparticles induce genotoxicity but not mutagenicity in golden mussel Limnoperna fortunei. Aquatic Toxicology, 170(1): 223-228. http://dx.doi.org/10.1016/j.aquatox.2015.11.030. PMid:26675368.
GONDIKAS, A.P.; KAMMER, F.; REED, R.B.; WAGNER, S.; RANVILLE, J.F.; HOFMANN, T. 2014 Release of TiO2 nanoparticles from sunscreens into surface waters: a one-year survey at the old Danube recreational Lake. Environmental Science & Technology, 48(10): 5415-5422. http://dx.doi.org/10.1021/es405596y. PMid:24689731.
GOTTSCHALK, F.; SUN, T.; NOWACK, B. 2013 Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environmental Pollution, 181(1): 287-300. http://dx.doi.org/10.1016/j.envpol.2013.06.003. PMid:23856352.
HANAOR, D.; MICHELAZZI, M.; LEONELLI, C.; SORRELL, C.C. 2012 The effects of carboxylic acids on aqueous dispersion and eletroforetic deposition of ZrO2. Journal of the European Ceramic Society, 32(1): 235-244. http://dx.doi.org/10.1016/j.jeurceramsoc.2011.08.015.HANDY, R.D.;
HENRY, T.B.; SCOWN, T.M.; JOHNSTON, B.D.; TYLER, C.R. 2008a Manufactured nanoparticles: their uptake and effects on fish - a mechanistic analysis. Ecotoxicology, 17(5): 396-409. http://dx.doi.org/10.1007/s10646-008-0205-1. PMid:18408995.
HANDY, R.D.; OWEN, R.; VALSAMI-JONES, E. 2008b The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology, 17(5): 315-325. http://dx.doi.org/10.1007/s10646-008-0206-0. PMid:18408994.
HAO, L.; WANG, Z.; XING, B. 2009 Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in juvenile carp (Cyprinus carpio). Journal of Environmental Sciences, 21(10): 1459-1466. http://dx.doi.org/10.1016/S1001-0742(08)62440-7. PMid:20000003.
JAYASEELAN, C.; ABDUL RAHUMAN, A.; RAMKUMAR, R.; PERUMAL, P.; RAJAKUMAR, G.; VISHNU KIRTHI, A.; SANTHOSHKUMAR, T.; MARIMUTHU, S. 2014 Effect of sub-acute exposure to nickel nanoparticles on oxidative stress and histopathological changes in Mozambique tilapia, Oreochromis mossambicus. Ecotoxicology and Environmental Safety, 107(1): 220-228. http://dx.doi.org/10.1016/j.ecoenv.2014.06.012. PMid:25011118.
KAYA, H.; AYDIN, F.; GíÅ“RKAN, M.; YILMAZ, S.; ATES, M.; DEMIR, V.; ARSLAN, Z. 2016 A comparative toxicity study between small and large size zinc oxide nanoparticles in tilapia (Oreochromis niloticus): Organ pathologies, osmoregulatory responses and immunological parameters. Chemosphere, 144(1): 571-582. http://dx.doi.org/10.1016/j.chemosphere.2015.09.024. PMid:26398925.
KLOTH, T.C.; WOHLSCHIAG, D.E. 1972 Size-related metabolic responses of the pinfish, Lagodon rhomboides, to salinity variations and sublethal petrochemical pollution. Marketing Science, 16(1): 125-137.LEMAIRE, P.; STURVE, J.; FORLIN, L.;
LIVINGSTONE, D.R. 1996 Studies on aromatic hydrocarbon quinone metabolism and DT-diaphorase function in liver of fish species. Marine Environmental Research, 2(1-4): 317-321. http://dx.doi.org/10.1016/0141-1136(95)00042-9.
MACHADO, M.R.; FANTA, E. 2003 Effects of the organophosphorous methyl parathion on the branchial epithelium of a freshwater fish Metynnis roosevelti. Brazilian Archives of Biology and Technology, 46(3): 361-372. http://dx.doi.org/10.1590/S1516-89132003000300008.
MENARD, A.; DROBNE, D.; JEMEC, A. 2011 Exotoxicity of nanosized TiO2- Review of in vivo data. Environmental Pollution, 159(3): 677-684. http://dx.doi.org/10.1016/j.envpol.2010.11.027. PMid:21186069.
MILLER, R.; LENIHAN, H.; MULLER, E.; TSENG, N.; HANNA, S.; KELLER, A. 2010 Impacts of metal oxide nanoparticles on marine phytoplankton. Environmental Science & Technology, 44(19): 7329-7334. http://dx.doi.org/10.1021/es100247x. PMid:20469893.
MIRANDA, R.R.; DAMASO DA SILVEIRA, A.L.R.; JESUS, I.P.; GRí–TZNER, S.R.; VOIGT, C.L.; CAMPOS, S.X.; GARCIA, J.R.E.; RANDI, M.A.F.; RIBEIRO, C.A.O.; FILIPAK NETO, F. 2016 Effects of realistic concentrations of TiO2 and ZnO nanoparticles in Prochilodus lineatus juvenile fish. Environmental Science and Pollution Research International, 23(6): 5179-5188. http://dx.doi.org/10.1007/s11356-015-5732-8. PMid:26555884.
MONTEIRO, K.M.; CARVALHO, M.O.; ZAHA, A.; FERREIRA, H.B. 2010 Proteomic analysis of the Echinococcus granulosus metacestode during infection of its intermediate host. Proteomics, 10(10): 1985-1999. http://dx.doi.org/10.1002/pmic.200900506. PMid:20217864.
NIGRO, M.; BERNARDESCHI, M.; COSTAGLIOLA, D.; DELLA-TORRE, C.; FRENZILLI, G.; GUIDI, P. ; LUCCHESI, P.; MOTTOLA, F.; SANTONASTASO, M.; SCARCELLI, V.; MONACI, F.; CORSI, I.; STINGO, V. ; ROCCO, L. 2015 n-TiO 2 and CdCl 2 co-exposure to titanium dioxide nanoparticles and cadmium: genomic, DNA and chromosomal damage evaluation in the marine fish European sea bass (Dicentrarchus labrax). Aquatic Toxicology (Amsterdam, Netherlands), 168(1): 72-77. http://dx.doi.org/10.1016/j.aquatox.2015.09.013. PMid:26448269.
PATHIRATNE, A.; GEORGE, S.G. 1998 Toxicity of malathion to Nile tilapia, Oreochromis niloticus and modulation by other environmental contaminants. Aquatic Toxicology (Amsterdam, Netherlands), 43(4): 261-271. http://dx.doi.org/10.1016/S0166-445X(98)00059-9.
POLEKSIC, V.; MITROVIC-TUTUNDZIC, V. 1994 Fish gills as a monitor of sublethal and chronic effects of pollution. In: MULLER, R.; LLOYD, R. Suletha and chronic effects of pollutants on freshwater fish. Rome: FAO. p. 339-352.
REZENDE, K.F.O.; SANTOS, R.M.; BORGES, J.C.S.; SALVO, L.M.; SILVA, J.R.M.C. 2014 Histopathological and genotoxic effects of pollution on Nile Tilapia (Oreochromis niloticus, Linnaeus, 1758) in the Billings Reservoir (Brazil). Toxicology Mechanisms and Methods, 24(6): 404-411. http://dx.doi.org/10.3109/15376516.2014.925020. PMid:24835316.
REZENDE, K.F.O.; SILVA-NETO, G.M.; PINTO, J.M.; SALVO, L.M.; SEVERINO, D.; MORAES, J.C.T.; SILVA, J.R.M.C. 2016 Hepatic parameters of marine fish Rachycentron canadum (Linnaeus, 1766) exposed to sublethal concentrations of water-soluble fraction of petroleum. Journal of Marine Biology and Oceanography, 5(2): 1-6.
SANTOS, D.B.; BARBIERI, E.; BONDIOLI, A.C.; MELO, C.B. 2014 Effects of Lead in white shrimp (Litopenaeus schmitti) metabolism regarding salinity. O Mundo da Saúde, 38(1): 16-23.
SCHLENK, D.; HANDY, R.; STEINERT, S.; DEPLEDGE, M.H.; BENSON, W. 2008 Biomarkers. In: GIULIO, R.T.; HINTON, D. The toxicology of fishes. Boca Raton: CRC Press. p. 683-731. http://dx.doi.org/10.1201/9780203647295.ch16.
SCHWAIGER, J.; WANKE, R.; ADAM, S.; PAWERT, M.; HONNEN, W.; TRIEBSKORN, R. 1997 The use of histopathological indicators to evaluate contaminant-related stress in fish. Journal of Aquatic Ecosystem Stress and Recovery, 6(1): 75-86. http://dx.doi.org/10.1023/A:1008212000208.
SHEPHARD, K.L. 1994 Functions for fish mucus. Reviews in Fish Biology and Fisheries, 4(4): 401-429. http://dx.doi.org/10.1007/BF00042888.
SHI, H.; MAGAYE, R.; CASTRANOVA, V.; ZHAO, J. 2013 Titanium dioxide nanoparticles: a review of current toxicological data. Particle and Fibre Toxicology, 10(1): 15. http://dx.doi.org/10.1186/1743-8977-10-15. PMid:23587290.
SUGANTHI, P.; MURALI, M.; HE, S.M.; BASU, H.; SINGHAL, R.K. 2015 Morphological and liver histological effects of ZnO nanoparticles on mozambique tilapia. Journal of Advanced Applied Scientific Research, 1(1): 68-83.
TAKASHIMA, F.; HIBYA, T. 1995 An atlas of fish histology: normal and pathological features. 1ª ed. Tokyo: Kodansha. 213 p.
TAWEEL, A.; SHUHAIMI-O, M.; AHMAD, A.K. 2013 In vivo acute toxicity tests of some heavy metals to tilapia ï¬Âsh (Oreochromis niloticus). The Journal of Biological Sciences, 13(5): 365-371. http://dx.doi.org/10.3923/jbs.2013.365.371.
USPHA í United States Public Health Association 1980. Standard Methods for the Examination of Water and Wastewater - 4500-NH3. 15th ed. Washington: USPHA.
WESTERS, H. 2001 Fish hatchery management. Bethesda: American Fisheries Society. 733p.
WINKLER, L. 1888 Die Bestimmung des im Wasser gelí¶sten Sauerstoffes. Berichte der Deutschen Chemischen Gesellschaft, 21(1): 2843-2854. http://dx.doi.org/10.1002/cber.188802102122.
XIONG, D.W.; FANG, T.; YU, L.P.; SIMA, X.F.; ZHU, W.T. 2011 Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. The Science of the Total Environment, 409(8): 1444-1452. http://dx.doi.org/10.1016/j.scitotenv.2011.01.015. PMid:21296382.
XIONG, S.; GEORGE, S.; JI, Z.; LIN, S.; YU, H.; DAMOISEAUX, R.; FRANCE, B.; NG, K.W.; LOO, S.C.J. 2013 Size of TiO2 nanoparticles influences their phototoxicity: an in vitro investigation. Archives of Toxicology, 87(1): 99-109. http://dx.doi.org/10.1007/s00204-012-0912-5. PMid:22885792.