DIFERENTES DENSIDADES DE ROBALO FLECHA CRIADOS EM TANQUES REDE MARINHOS NO SUL DO BRASIL
DOI:
https://doi.org/10.20950/1678-2305/bip.2021.47.e643Palavras-chave:
productivity;, marine fish farming;, performance indicators;, growth-out.Resumo
Foram avaliadas duas fases de crescimento de juvenis de robalo flecha (Centropomus undecimalis) sob três diferentes densidades: 10, 20 e 40 peixes m-3, em tanques rede de 2,5 m3 com malha de 12 mm. Na fase I, robalos de 72,0 g e 21,2 cm foram criados por 270 dias. Na fase II, robalos de 204,6 g e 29,2 cm foram criados por 202 dias. A temperatura e salinidade médias da água foram 24,3°C e 34,5, respectivamente, na Ilha de Santa Catarina, Brasil. Os dados foram avaliados por modelos de regressão. O aumento da densidade não influenciou a taxa de sobrevivência, 51,0% (fase I) e 88,7% (fase II). A densidade de 20 peixes m-3 proporcionou os melhores resultados, como peso corporal, nas duas fases, 215,7 g e 364,7 g, respectivamente. A temperatura da água foi o principal fator limitante para o crescimento do robalo. Portanto, em um clima subtropical, recomenda-se começar a crescer na primavera (> 24°C) e evitar o manuseio de peixes quando a temperatura estiver abaixo de 20°C. A análise de regressão do peso final mostrou que densidades de 24 peixes m-3 podem ser indicadas para robalo nas condições deste estudo.
Referências
Alvarez-Lajonchí¨re, L.S.; Tsuzuki, M.Y. 2008. A review of methods for Centropomus spp. (snooks) aquaculture and recommendations for the establishment of their culture in Latin America. Aquaculture Research, 39(7): 684-700. https://doi.org/10.1111/j.1365-2109.2008.01921.x.
Ambrosio, P.P.; Costa, C.; Pablo, S.; Flos, R. 2008. Stocking density and its influence on shape of Senegalese sole adults. Aquaculture International, 16(4): 333-343. https://doi.org/10.1007/s10499-007-9147-5.
Arenas, M.: Álvarez-González, C.A.; Barreto, A.; Sánchez-Zamora, A.; Suárez-Bautista, J.; Cuzon, G.; Gaxiola, G. 2021. Physiological and metabolic protein-sparing effects of dietary lipids on common snook Centropomus undecimalis (Bloch, 1792) juveniles. Aquaculture Nutrition, 27(4): 1089-1102. https://doi.org/10.1111/anu.13250.
Beveridge, M. 2004. Cage Aquaculture, 3rd ed. Wiley-Blackwell, 380 p.
Bjí¶rnsson, B. 1994. Effects of stocking density on growth rate of halibut (Hippoglossus hippoglossus) reared in large circular tanks for three years. Aquaculture, 123(3-4): 259-270. https://doi.org/10.1016/0044-8486(94)90064-7.
Bhujel, R.C. 2008. Statistics for aquaculture. Iowa, USA: Wiley-Blackwell. 1st ed., 240p.
Bjí¸rndal, T.; Tusvik, A. 2019. Economic analysis of land based farming of salmon. Aquaculture Economics & Management, 23(4): 449-475. https://doi.org/10.1080/13657305.2019.1654558.
Blewett, D.A.; Stevens, P.W. 2014. Temperature variability in a subtropical estuary and implications for Common Snook Centropomus undecimalis, a cold-sensitive fish. Gulf of Mexico Science, 32(1): 44-54. https://doi.org/10.18785/goms.3201.04.
Cerqueira, V.R.; Carvalho, C.V.C.; Sanches, E.G.; Passini, G.; Baloi, M.; Rodrigues, R.V. 2017. Manejo de reprodutores e controle da reprodução de peixes marinhos da costa brasileira. Revista Brasileira de Reprodução Animal, 41(1): 94-102.
Cerqueira, V.R.; Passini, G.; Carvalho, C.V.A.; Sterzelecki, F.; Cipriano, F.S. 2020. Cultivo de robalo-flecha (Centropomus undecimalis) e robalo-peva (Centropomus parallelus). In: Baldisserotto, B. (ed). Espécies nativas para piscicultura no Brasil. 3ª ed. Santa Maria: Editora da UFSM. pp. 449-474.
Costa, C.; Menesatti, P.; Rambaldi, E.; Argenti, L.; Bianchini, M.L. 2013. Preliminary evidence of colour differences in European sea bass reared under organic protocols. Aquacultural Engineering, 57: 82-88. https://doi.org/10.1016/j.aquaeng.2013.08.001.
David, L.H.C.; Pinho, S.M.; Correia, D.; Tsuzuki, M.T.; Emerenciano, M.G.C.; Mello, G.L. 2019. Desempenho zootécnico e rendimento de filé do robalo-flecha alimentado com diferentes dietas comerciais. LABOMAR, Arquivos de Ciências do Mar, 52(1): 69-80.
EUMOFA - European Market Observatory for Fisheries and Aquaculture Products. 2018. Case Study: Seabass in the EU. Price structure in the supply chain for seabass. European Commission, Brussels. 47p. https://doi.org/10.2771/74704.
FAO - Food and Agriculture Organization of the United Nations. 2009. Cultured Aquatic Species Information Programme. Lates calcarifer (Block, 1790). URL: <http://www.fao.org/fishery/culturedspecies/Lates_calcarifer/en>. Accessed: Dec. 05, 2020.
Gilmore, R.G.; Donahoe, C.J.; Cooke, D.W. 1983. Observações sobre a distribuição e biologia do robalo, Centropomus undecimalis (Bloch). Florida Scientist, 46: 313-336.
Gracia-López, V.; García-Galano, T.; Gaxiola-Cortés, G.; Pacheco-Campos, J. 2003. Efecto del nivel de proteína en la dieta y alimentos comerciales sobre el crecimiento y la alimentación en juveniles del robalo blanco, Centropomus undecimalis (Bloch, 1792). Ciencias Marinas, 29(4B): 585-594. http://dx.doi.org/10.7773/cm.v29i42.198.
Howells, R.G.; Sonski, A.J.; Shafland, P.L.; Hilton, B.D. 1990. Lower temperature tolerance of snook, Centropomus undecimalis. Northeast Gulf Science, 11(2): 155-158. https://doi.org/10.18785/negs.1102.08.
Ibarra-Castro, L.; Alvarez-Lajonchí¨re, L.; Rosas, C.; Palomino-Albarrána, I.G.; Holt, J.; Sanchez-Zamora, A. 2011. GnRHa-induced spawning with natural fertilization and pilot-scale juvenile mass production of common snook, Centropomus undecimalis (Bloch, 1792). Aquaculture, 319(3-4): 479-483. https://doi.org/10.1016/j.aquaculture.2011.07.014.
Liao, I.C.; Leaí±o, E.M. 2008. The aquaculture of groupers. 1st ed. Asian Fisheries Society, National Taiwan Ocean University, The Fisheries Society of Taiwan, World Aquaculture Society, 241 p.
Liebl, F.; Amaral Jr. H.; Garcia, S.; Souto, L.; Carvalho, C.V.A.; Cerqueira, V.R. 2016. Desempenho de juvenis de robalo-flecha e robalo-peva submetidos a diferentes densidades de estocagem em água doce. Boletim do Instituto de Pesca, 42(1): 145-155. https://doi.org/10.20950/1678-2305.2016v42n1p145.
Lima-Junior, S.E.; Cardone, I.B.; Goitein, R. 2002. Determination of a method for calculation of allometric condition factor of fish. Acta Scientiarum, 24: 397-400.
Llorente, I.; Polanco, J.F.; Diez, E.B.; Odriozola, M.D.; Bjí¸rndal, T.; Asche, F.; Guillen, J.; Avdelas, L.; Nielsen, R.; Cozzolino, M.; Luna, M.; Sánchez, J.L.F.; Luna, L.; Aguilera, C.; Basurco, B. 2020. Assessment of the economic performance of the seabream and seabass aquaculture industry in the European Union, Marine Policy, 117: 103876. https://doi.org/10.1016/j.marpol.2020.103876.
Moretti, A.; Fernandez-Criado, M.; Cittolin, G.; Guidastri, R. 1999. Manual on hatchery production of seabass and gilthead seabream. v. 1. FAO, Rome: Italy, 194 p.
Muller, R.G.; Taylor, R.G. 2000. Stock assessment update of common snook, Centropomus undecimalis. Florida Marine Research Institute. St. Petersburg, Florida, USA, 48p.
Ostini, S.; Oliveira, I.R.; Serralheiro, P.C.S.; Sanches, E.G. 2007. Criação de robalo-peva Centropomus parallelus submetido a diferentes densidades de estocagem. Revista Brasileira de Saúde e Produção Animal, 8(3): 247-254.
Oliveira, R.L.M.; Santos, L.B.G.; Silva Neto, N.G.; Silva, S.P.A.; Silva, F.S.; Melatti, E.; Cavalli, R.O. 2019. Feeding rate and feeding frequency affect growth performance of common snook (Centropomus undecimalis) juveniles reared in the laboratory. Brazilian Journal of Animal Science, 48: e20170292. https://doi.org/10.1590/rbz4820170292.
Passini, G.; Sterzelecki, F.C.; Carvalho, C.V.A.; Baloi, M. F.; Naide, V.; Cerqueira, V.R. 2018. 17α-Methyltestosterone implants accelerate spermatogenesis in common snook, Centropomus undecimalis, during first sexual maturation, Theriogenology, 106: 134-140, https://doi.org/10.1016/j.theriogenology.2017.10.015.
Passini, G.; Carvalho, C.V.A.; Sterzelecki, F.C.; Baloi, M.F.; Cerqueira, V.R. 2019. Spermatogenesis and steroid hormone profile in puberty of laboratory- T reared common snook (Centropomus undecimalis). Aquaculture, 500: 622í 630. https://doi.org/10.1016/j.aquaculture.2018.10.031.
Pope, K.L.; Blankinship, D.R.; Fisher, M.; Patino R. 2006. Status of the common snook (Centropomus undecimalis) in Texas. Texas Journal of Science, 58: 325-332.
Purtlebaugh, C.H.; Martin, C.W.; Allen, M.S. 2020. Poleward expansion of common snook Centropomus undecimalis in the northeastern Gulf of Mexico and future research needs. PLoS ONE 15(6): e0234083. https://doi.org/10.1371/journal.pone.0234083.
Rivas, L.R. 1986. Systematic review of the Perciform fishes of the genus Centropomus. Copeia, 1986(3): 578-611. https://doi.org/10.2307/1444940.
Rowland, S.J.; Mifsud, C.; Nixon, M.; Boyd, P. 2006. Effects of stocking density on the performance of the Australian freshwater silver perch (Bidyanus bidyanus) in cages. Aquaculture, 253(1-4): 301-308. https://doi.org/10.1016/j.aquaculture.2005.04.049.
Shafland, P.L.; Foote, K.J. 1983. A lower lethal temperature for fingerling snook (Centropomus undecimalis). Northeast Gulf Science, 6(2): 175-177. https://doi.org/10.18785/negs.0602.12.
Silvão, C.F.; Nunes, A.J.P. 2017. Effect of dietary amino acid composition from proteins alternative to fishmeal on the growth of juveniles of the common snook, Centropomus undecimalis. Revista Brasileira de Zootecnia, 46(7): 569-575. https://doi.org/10.1590/S1806-92902017000700003.
Souza-Filho, J.J.; Cerqueira, V.R., 2003. Influência da densidade de estocagem no cultivo de juvenis de robalo-flecha mantidos em laboratório. Pesquisa Agropecuária Brasileira, 38(11): 1317-1322. https://doi.org/10.1590/S0100-204X2003001100010.
Tavares, L.E.R.; Luque, J.L. 2003. A new species of Acantholochus (Copepoda: Bomolochidae) parasitic on Centropomus undecimalis (Osteichthyes: Centropomidae) from the coastal zone of the State of Rio de Janeiro, Brazil. Memórias do Instituto Oswaldo Cruz, 98(2): 241-245. https://doi.org/10.1590/S0074-02762003000200013.
Taylor, G.R.; Wittington, J.A.; Grier, H.J.; Crabtree, R.E. 2000. Age, growth, maturation, and protandric sex reversal in common snook, Centropomus undecimalis, from the east and west coasts of south Florida. Fishery Bulletin, National Marine Fisheries Service, 98(3): 612-624.
Taylor, R.G.; Grier, H.J.; Whittington, J.A. 1998. Spawning rhythms of common snook in Florida. Journal of Fish Biology, 53(3): 502-520. https://doi.org/10.1111/j.1095-8649.1998.tb00998.x.
Tiensongrusmee, B.; Budileksono, S.; Cjhanstarasri, S.; Yuwono, S.K.Y.; Santoso, H. 1989. Propagation of seabass, Lates calcarifer in captivity. FAO Seafarming Development Project, INS/81/008/MANUAL/15, Lampung, Indonesia, 55p. URL: <http://www.fao.org/3/AB889E/AB889E00.htm>.
Trapani, A.M.D.; Sgroi, F.; Testa, R.; Tudisca, S. 2014. Economic comparison between offshore and inshore aquaculture production systems of European sea bass in Italy, Aquaculture, 434: 334-339. https://doi.org/10.1016/j.aquaculture.2014.09.001.
Tsuzuki, M.Y.; Berestinas, A.C. 2008. Desempenho de juvenis de robalo-peva Centropomus parallelus com diferentes dietas comerciais e frequências alimentares. Boletim do Instituto de Pesca, 34(4): 535-541.
Tucker, J.W. 1987. Snook and tarpon snook culture and preliminary evaluation for commercial farming. The Progressive Fish-Culturist, 49(1): 49-57. https://doi.org/10.1577/1548-8640(1987)49<49:SATSCA>2.0.CO;2.
Tucker, J.W. 1998 Culture of Established and Potential Speciesâ€"Food Fish. In: Marine Fish Culture. Springer, Boston, MA. Chapter 13, pp. 533-574. https://doi.org/10.1007/978-1-4615-4911-6_13.
Wedemeyer, G.A. 1997. Effects of rearing conditions on the health and physiological quality of fish in intensive culture. In: Iwama, G.; Pickering, A.; Sumpter, J.; Schreck, C. (eds.). Fish Stress and Health in Aquaculture. Cambridge University Press, Cambridge, pp. 35-72.
Winner, B.L.; Blewett, D.A.; McMichael, R.H.; Guenther, C.B. 2010. Relative abundance and distribution of common snook along shoreline habitats of Florida Estuaries. Transactions of the American Fisheries Society, 139(1): 62-79. https://doi.org/10.1577/T08-215.1.