Efeito antinutricional da lectina de sementes de faveira (Parkia platycephala) em tambatinga (Colossoma macropomum x Piaractus brachypomus)
DOI:
https://doi.org/10.20950/1678-2305/bip.2022.48.e745Palavras-chave:
alimentos alternativos, peixe amazônico, fava-de-bolota, desempenho de crescimento, lectinasResumo
Este estudo investigou possíveis efeitos antinutricionais da lectina de Parkia platycephala (0, 20, 40 ou 60 mg kg-1 de dieta) na alimentação de tambatinga por 60 dias, bem como métodos de inativação dessa proteína. O ganho de peso, a taxa de crescimento específico e o ganho de peso relativo diminuíram, enquanto o índice de conversão alimentar aumentou com o incremento de lectina na dieta. Os níveis de glicogênio hepático dos peixes alimentados com 60 mg kg-1 foram superiores aos dos que ingeriram 20 e 40 mg kg-1. Dietas contendo 40 e 60 mg kg-1 aumentaram os níveis de glicose muscular em comparação com os que receberam a dieta controle. Nos animais cuja dieta continha lectina, reduziu-se o glicogênio muscular em comparação com os da dieta controle. Os espécimes alimentados com 60 mg kg-1 apresentaram menor nível de proteína muscular do que aqueles que consumiram 20 mg kg-1. Testes in vitro mostraram que a atividade de hemaglutinação da lectina foi inibida por D-manose, D-glicose e α-metil-D-manopiranosídeo. O tratamento térmico entre 50 e 60°C foi suficiente para reduzir a ação da lectina, assim como o pH abaixo de 6 e acima de 7. Portanto, usar farelo de P. platycephala como ingrediente em dieta para tambatinga sem inativação da lectina não é recomendado, pois pode afetar negativamente os parâmetros bioquímicos e o crescimento dos exemplares. Soluções ácidas ou alcalinas podem ser uma alternativa para inativar a proteína e melhorar sua utilização em peixes e outros animais.
Referências
Aanyu, M.; Ondhoro, C.C.; Ganda, E.; Kato, D.C.; Basiita, R.K. 2014. Intestine histology, nutrient digestibility and body composition of Nile tilapia (Oreochromis niloticus) fed on diets with both cotton and seed cakes. African Journal of Biotechnology, 13(37): 3831-3839. https://doi.org/10.5897/AJB12.1895
Abafi, J.; Aliyu-Paiko, M.; Adamu, K.M.; King, M.A. 2019. Dietary inclusion of fermented parkia in feeds as an organic strategy to improve feed quality and antioxidant parameters of African catfish (Clarias gariepinus) fingerlings. Asian Journal of Biotechnology and Bioresource Technology, 5: 1-14. https://doi.org/10.9734/ajb2t/2019/v5i330059
Abdul-Qadir, A.M.; Mohammad, A.P.; Adamu, K.M.; Abdurraheem, A.A. 2020. Inclusion of Sargassum muticum and Parkia biglobosa in diets for African Catfish (Clarias gariepinus) elevates feed utilization, growth and immune parameters. African Journal of Agricultural Research, 15(1): 134-139. https://doi.org/10.5897/AJAR2019.14189
Alves, A.A.; Sales, R.O.; Neiva, J.N.M.; Medeiros, A.N.; Braga, A.P.; Azevedo, A.R. 2007. Degradabilidade ruminal in situ de vagens de faveira (Parkia platycephala Benth.) em diferentes tamanhos de partículas. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 59(4): 1045-1051. https://doi.org/10.1590/S0102-09352007000400034
Araújo, M.J.; Miranda, H.H.; Marques, C.A.T.; Batista, I.L.; Carvalho, F.J.V.; Jácome, D.L.S.; Edvan, R.L.; Silva, T.P.D.; Bezerra, L.R.; Lima, A.G.V.O.; Oliveira, R.L. 2019. Effect of replacing ground corn with Parkia platycephala pod meal on the performance of lactating Anglo-Nubian goats. Animal Feed Science and Technology, 258: 114313. https://doi.org/10.1016/j.anifeedsci.2019.114313
Batista, K.L.R.; Silva, C.R.; Santos, V.F.; Silva, R.C.; Roma, R.R.; Santos, A.L.E.; Pereira, R.O.; Delatorre, P.; Rocha, B.A.M.; Soares, A.M.S.; Costa-Júnior, L.M.; Teixeira, C.S. 2018. Structural analysis and anthelmintic activity of Canavalia brasiliensis lectin reveal molecular correlation between the carbohydrate recognition domain and glycans of Haemonchus contortus. Molecular & Biochemical Parasitology, 225: 67-72. https://doi.org/10.1016/j.molbiopara.2018.09.002
Bidinotto, P.M.; Moraes, G.; Souza, R.H.S. 1997. Hepatic glycogen and glucose in eight tropical freshwater teleost fish: A procedure for field determinations of micro samples. Boletim Técnico do CEPTA, 10: 53-60.
Cavada, B.S.; Santos, C.F.; Grangeiro, T.B.; Silva, L.I.M.M.; Campos, M.J.O.; Souza, F.A.M.; Calvette, J.J. 1997. Isolation and partial characterization of a lectin from Parkia platycephala Benth seeds. Physiology and Molecular Biology of Plants, 3: 109-115.
Cook, J.T.; Mcniven, M.A.; Richardson, G.F.; Sutterlin, A.M. 2000. Growth rate, body composition and feed digestibility/conversion of growth enhanced transgenic Atlantic salmon (Salmo salar). Aquaculture, 188(1-2): 15-32. https://doi.org/10.1016/S0044-8486(00)00331-8
Del Sol, F.G.; Nagano, C.S.; Cavada, B.S.; Calvette, J.J. 2005. The first crystal structure of a mimosoideae lectin reveals a novel quaternary arrangement of a widespread domain. Journal of Molecular Biology, 353(3): 574-583. https://doi.org/10.1016/j.jmb.2005.08.055
Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3): 350-356. https://doi.org/10.1021/ac60111a017
Harrower, J.R.; Brown, C.H. 1972. Blood lactic acid—a micromethod adapted to field collection of microliter samples. Journal of Applied Physiology, 32(5): 709-711. https://doi.org/10.1152/jappl.1972.32.5.709
Hart, S.D.; Bharadwaj, A.S.; Brown, P.B. 2010. Soybean lectins and trypsin inhibitors, but not oligosaccharides or the interactions of factors, impact weight gain of rainbow trout (Oncorhynchus mykiss). Aquaculture, 306(1-4): 310-314. https://doi.org/10.1016/j.aquaculture.2010.03.027
Hashimoto, D.T.; Mendonça, F.F.; Senhorini, J.A.; Oliveira, C.; Foresti, F.; Porto-Foresti, F. 2011. Molecular diagnostic methods for identifying Serrasalmid fish (Pacu, Pirapitinga, and Tambaqui) and their hybrids in the Brazilian aquaculture industry. Aquaculture, 321(1-2): 49-53. https://doi.org/10.1016/j.aquaculture.2011.08.018
Lopes, J.M.; Marques, N.C.; Santos, M.D.M.C.; Souza, C.F.; Baldissera, M.D.; Carvalho, R.C.; Santos, L.L.; Pantoja, B.T.S.; Heinzmann, B.M.; Baldisserotto, B. 2020. Dietary limon Citrus × latifolia fruit peel essential oil improves antioxidant capacity of tambaqui (Colossoma macropomum) juveniles. Aquaculture Research, 51(12): 4852-4862. https://doi.org/10.1111/are.14771
Lowry, O.H.; Rosebrough, N.J.; Farra, L.; Randall, R.J. 1951. Protein measurement with the Folin Phenol Reagent. Journal of Biological Chemistry, 193(1): 265-275.
Makkar, H.P.S. 2016. State-of-the-art on detoxification of Jatropha curcas products aimed for use as animal and fish feed: A review. Animal Feed Science and Technology, 222: 87-99. https://doi.org/10.1016/j.anifeedsci.2016.09.013
Martins, G.P.; Pezzato, L.E.; Guimarães, I.G.; Padovani, C.R.; Mazini, B.S.M.; Barros, M.M. 2017. Antinutritional factors of raw soybean on growth and haematological responses of Nile tilapia. Boletim do Instituto de Pesca, 43(3): 322-333. https://doi.org/10.20950/1678-2305.2017v43n3p322
Michael, K.G.; Mathias, A.I. 2020. Growth performance of Clarias gariepinus fed locust bean meal (Parkia biglobosa) supplemented diets. International Journal of Fisheries and Aquatic Studies, 8(1): 266-270.
Mohan, V.R.; Tresina, P.S.; Daffodil, E.D. 2016. Antinutritional factors in legume seeds: Characteristics and determination. In: Caballero, B.; Finglas, P.; Toldrá, F. (eds). The encyclopedia of food and health. Oxford: Academic Press, p. 211-220.
Moreira, R.A.; Perrone, J.C. 1977. Purification and partial characterization of a lectin from Phaseolus vulgaris. Plant Physiology, 59(5): 783-787. https://doi.org/10.1104%2Fpp.59.5.783
Musa, S.O.; Tiamiyu, L.O.; Solomon, S.G.; Ayuba, V.O.; Okomoda, V.T. 2018. Nutritional value of hydrothermally processed Jatropha curcas kernel and its effect on growth and hematological parameters of Clarias gariepinus fingerlings (Burchell, 1982). Aquaculture Reports, 10: 32-38. https://doi.org/10.1016/j.aqrep.2018.04.001
Oishi, C.A.; Nwanna, L.W.; Pereira Filho, M. 2010. Optimum dietary protein requirement for Amazonian Tambaqui, Colossoma macropomum Cuvier, 1818, fed fish meal free diets. Acta Amazonica, 40(4): 757-762. https://doi.org/10.1590/S0044-59672010000400017
Popova, A.; Mihaylova, D. 2019. Antinutrients in plant-based foods: a review. Open Biotechnology Journal, 13: 68-76. https://doi.org/10.2174/1874070701913010068
Pretto, A.; Silva, L.P.; Corrêia, V.; Martinelli, S.G. 2020. Effect of feeding crude or treated tung meal (Aleurites fordii) in the diet of Rhamdia quelen on growth, digestive enzymes and biochemical parameters. Ciência Animal Brasileira, 21: 46276. https://doi.org/10.1590/1809-6891v21e-46276
Prophet, E.B.; Mills, B.; Arrington, J.B.; Sobin, L.H. 1992. Laboratory methods in histotechnology. Washington, D.C.: American Registry of Pathology, Armed Forces Institute of Pathology. 279 p.
Ribeiro, P.F.; Leite, L.A.; Quaresma, F.S.; Farias, W.R.L.; Sampaio, A.H. 2019. Dietary supplementation with Arthrospira platensis in tambatinga (Colossoma macropomum × Piaractus brachypomus). Ciência Agronômica, 50: 600-608. https://doi.org/10.5935/1806-6690.20190071
Santos, A.L.E.; Leite, G.O.; Carneiro, R.F.; Roma, R.R.; Santos, V.F.; Santos, M.H.C.; Pereira, R.O.; Silva, R.C.; Nagano, C.S.; Sampaio, A.H.; Rocha, B.A.M.; Delatorre, P.; Campos, A.R.; Teixeira, C.S. 2019. Purification and biophysical characterization of a mannose/N-acetyl-D-glucosamine-specific lectin from Machaerium acutifolium and its effect on inhibition of orofacial pain via TRPV1 receptor. Archives of Biochemistry and Biophysics, 664: 149-156. https://doi.org/10.1016/j.abb.2019.02.009
Silva, R.R.S.; Silva, C.R.; Santos, V.F.; Barbosa, C.R.S.; Muniz, D.F.; Santos, A.L.E.; Santos, M.H.C.; Rocha, B.A.M.; Batista, K.L.R.; Costa-Júnior, L.M.; Coutinho, H.D.M.; Teixeira, C.S. 2019. Parkia platycephala lectin enhances the antibiotic activity against multi-resistant bacterial strains and inhibits the development of Haemonchus contortus. Microbial Pathogenesis, 135: 103629. https://doi.org/10.1016/j.micpath.2019.103629
Soares, K.J.A.; Ribeiro, F.; Bomfim, M.A.D.; Marchão, R.S. 2017. Valor nutricional de alimentos alternativos para tambaqui (Colossoma macropomum). Archivos de Zootecnia, 66(256): 491-498. https://doi.org/10.21071/az.v66i256.2764
Von Danwitz, A.; Schulz, C. 2020. Effects of dietary rapeseed glucosinolates, sinapic acid and phytic acid on feed intake, growth performance and fish health in turbot (Psetta maxima L.). Aquaculture, 516: 734624. https://doi.org/10.1016/j.aquaculture.2019.734624
Welengane, E.; Sado, R.Y.; Bicudo, A.J.A. 2019. Protein‐sparing effect by dietary lipid increase in juveniles of the hybrid fish tambatinga (Colossoma macropomum × Piaractus brachypomus). Aquaculture Nutrition, 25(6): 1272-1280. https://doi.org/10.1111/anu.12941
Xiang, Y.; Song, M.; Wei, Z.; Tong, J.; Zhang, L.; Xiao, L.; Ma, Z.; Wang, Y. 2011. A jacalin- related lectin-like gene in wheat is a component of the plant defence system. Journal of Experimental Botany, 62(15): 5471-5483. https://doi.org/10.1093/jxb/err226
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2023 Boletim do Instituto de Pesca
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.