Sea lettuce (Ulva ohnoi) cultivation in biofloc technology: growth performance and characterization of bioactive compounds

Authors

  • Jamilly Sousa Rocha Universidade Federal de Santa Catarina – Centro de Ciências Agrárias – Departamento de Aquicultura – Florianópolis (SC), Brazil. https://orcid.org/0000-0002-7614-409X
  • Daniele Santos Universidade Federal de Santa Catarina – Centro de Ciências Agrárias – Departamento de Aquicultura – Florianópolis (SC), Brazil. https://orcid.org/0000-0002-1535-6160
  • Mateus Aranha Martins Universidade Federal de Santa Catarina – Centro de Ciências Agrárias – Departamento de Aquicultura – Florianópolis (SC), Brazil. https://orcid.org/0000-0001-6928-5065
  • Claúdia Marlene Bauer Universidade Federal de Santa Catarina – Centro de Ciências Agrárias – Departamento de Fitotecnia – Florianópolis (SC), Brazil. https://orcid.org/0000-0003-2429-1773
  • Marcelo Maraschin Universidade Federal de Santa Catarina – Centro de Ciências Agrárias – Departamento de Fitotecnia – Florianópolis (SC), Brazil. https://orcid.org/0000-0002-4146-4835
  • Leila Hayashi Universidade Federal de Santa Catarina – Centro de Ciências Agrárias – Departamento de Aquicultura – Florianópolis (SC), Brazil. https://orcid.org/0000-0002-1602-9815
  • Felipe do Nascimento Vieira Universidade Federal de Santa Catarina – Centro de Ciências Agrárias – Departamento de Aquicultura – Florianópolis (SC), Brazil. https://orcid.org/0000-0001-9794-8671

Keywords:

BFT, Biocompounds, Macroalgae, Protein, Shrimp effluent, Ulvan

Abstract

This work evaluated the biofloc technology cultivation of Ulva ohnoi on its growth performance and biocompounds contents. Ulva ohnoi was cultivated under an initial density of 6 g·L-1 for 28 days using water from a biofloc tank which was exchanged daily at a 90% rate. Temperature, salinity, and illuminance were measured daily. Algae growth and their density was adjusted weekly. Results showed an average plant growth of 1.15%·day-1 (49.5 g·week-1). A significant difference was observed when comparing the initial (2.64 ± 0.3%) and final (4.62 ± 0.2%) ulvan concentration, in addition to a protein increase of 30.2%. No statistical differences were found for concentrations of phenolics and chlorophylls. An increase in flavonoids was observed on days 7 and 14 (0.41 ± 0.04; and 0.41 ± 0.07 μg·g-1 of dry weight), as well as a decrease in carotenoids (41.3%). In conclusion, increases in protein and ulvan were observed after Ulva ohnoi was cultivated in bioflocs.

References

Al-Malki, A.L.; Barbour, E.K.; Al-Zahrani, M.H.; Moselhy, S.S. 2018. Impact of Various Solvents on Yield and Activity of Phenolics and Flavonoids of Ulva lactuca (Chlorophyta) Algae. Journal of Pharmaceutical Research International, 24(3): 1-7. https://doi.org/10.9734/JPRI/2018/44875

Alves, A.; Sousa, R.A.; Reis, R.L. 2013. A practical perspective on ulvan extracted from green algae. Journal of Applied Phycology, 25: 407-424. https://doi.org/10.1007/s10811-012-9875-4

Angell, A.R.; Mata, L.; Nys, R.; Paul, N.A. 2015 Indirect and direct effects of salinity on the quantity and quality of total amino acids in Ulva ohnoi (Chlorophyta). Journal of Phycology, 51(3): 536-545. https://doi.org/10.1111/jpy.12300

Angell, A.R.; Mata, L.; Nys, R.; Paul, N.A. 2016.The protein content of seaweeds: a universal nitrogen-to-protein conversion factor of five. Journal of Applied Phycology,28: 511-524. https://doi.org/10.1007/s10811-015-0650-1

Association of Official Analytical Chemists (AOAC). 1999. Official Methods of Analysis. Arlington: OMA.

American Public Health Association (APHA). 1995 Standard method for the examination of water and waste water. Washington: American Public Health Association.

Avnimelech, Y. 2015. Biofloc Technology: a practical hand book. Baton Rouge: World Aquaculture Society.

Avnimelech, Y.; Ritvo, G. 2003. Shrimp and fish pond soils: Processes and management. Aquaculture, 220(1-4): 549-567. https://doi.org/10.1016/S0044-8486(02)00641-5

Bikker, P.; Krimpen, M.M.V.; Wikselaar, P.V.; Tan-Houweling, B.; Scaccia, N.; Hal, J.W.V.; Huijgen, W.J.J.; Cone, J.W.; Contreras-López, A.M. 2016 Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels. Journal of Applied Phycology, 28: 3511-3525. https://doi.org/10.1007/s10811-016-0842-3

Bolton, J.J.; Robertson-Andersson, D.V.; Shuuluka, D.; Kandjengo, L. 2009. Growing Ulva (Chlorophyta) in integrated systems as a commercial crop for abalone feed in South Africa: a swot analysis. Journal of Applied Phycology, 21: 575-583. https://doi.org/10.1007/s10811-008-9385-6

Boyd, C.E.; Tucker, C.S. 2014. Handbook for aquaculture water quality. Auburn: Craftmaster Printers.

Castelar, B.; Reis, R.P.; Calheiros, A.C.S. 2014. Ulva lactuca and U. flexuosa (Chlorophyta, Ulvophyceae) cultivation in Brazilian tropical waters: recruitment, growth, and ulvan yield. Journal of Applied Phycology, 26: 1989-1999. https://doi.org/10.1007/s10811-014-0329-z

Chakraborty, S.; Santa, S.C. 2008. Biochemical composition of eight algae collected from Suberdan. Indian Journal of Marine Science, 37(3): 329-332.

Chakraborty, S.; Santra, S.C.; Bhattacharya, T. 2010 Seasonal variation of enzyme activity and stress metabolites in eight benthic macro algae with fluctuations in salinity of Sunderban estuary, India. Indian Journal of Marine Sciences, 39(3): 429-433.

Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. 2002 Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food Drug Analysis 10(3): 178-182. https://doi.org/10.38212/2224-6614.2748

Chopin, T.; Buschmann, C.H.; Troell, M.; Kautsky, N.; Neori, A.; Kraemer, G.P.; González-Zertuche, J.A.; Yarish, C.; Neefus, C. 2001. Integrating seaweeds into marine aquaculture systems: a key toward sustainability. Journal of Phycology, 37(6): 975-986. https://doi.org/10.1046/j.1529-8817.2001.01137.x

Cohen, I.; Neori, A. 1991. Ulva lactuca Biofilters for Marine Fishpond Effluent. I. Ammonium Uptake Kinetics and Nitrogen Content. Botanic Marine, 34: 475-482. https://doi.org/10.1515/botm.1991.34.6.475

Collén, P.N.; Sassi, J.-F.; Rogniaux, H.; Marfaing, H.; Helbert, W. 2011. Ulvan Lyases Isolated from the Flavobacterium Persicivirga ulvanivorans Are the first Members of a New Polysaccharide Lyase Family. Journal of Biological Chemistry, 286(49): 42063-42071. https://doi.org/10.1074/jbc.M111.271825

Costa, L.; Fidelis, G.P.; Cordeiro, S.L.; Oliveira, R.M.; Sabry, D.A.; Câmara, R.B.G.; Nobre, L.T.D.B.; Costa,M.S.S.P.; Almeida-Lima, J.; Farias, E.H.C.; Leite, E.L.; Rocha, H.A.O. 2010. Biological activities of sulfated polysaccharides from tropical seaweeds. Biomedicine & Pharmacotherapy, 64: 21-28. https://doi.org/10.1016/j.biopha.2009.03.005

Crab, R.; Avnimelech, Y.; Defoirdt, T.; Bossier, P.; Verstraete, W. 2007 Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture, 270(1-4): 1-14. https://doi.org/10.1016/j.aquaculture.2007.05.006

Cruz-Suárez, L.E.; León, A.; Peña-Rodríguez, A.; Rodríguez- Peña, G.; Moll, B.; Ricque-Marie, D. 2010. Shrimp: Ulva co-culture: A sustainable alternative to diminish the need for artificial feed and improve shrimp quality. Aquaculture, 301(1-4): 64-68. https://doi.org/10.1016/j.aquaculture.2010.01.021

Dimova, D.; Dobreva, D.; Panayotova, V.; Makedonski, L. 2019. Dpph antiradical activity and total phenolic content of methanol and ethanol extracts from macroalgae (Ulva rigida) and microalgae (Chlorella). Scripta Scientifica Pharmaceutica, 6(2): 37-41. https://doi.org/10.14748/ssp.v7i2.7369

Duke, C.S.; Litaker, W.; Ramus, J. 1989. Effects of temperature, nitrogen supply, and tissue nitrogen on ammonium uptake rates of the Chlorophyte seaweeds Ulva curvata and Codium decorticatum. Journal of Phycology, 25(1): 113-120. https://doi.org/10.1111/j.0022-3646.1989.00113.x

Eismann, A.I.; Reis, R.P.; Silva, A.F.; Cavalcanti, D.N. 2020 Ulva spp. Carotenoids: Responses to environmental conditions. Algal Research, 48: 101916. https://doi.org/10.1016/j.algal.2020.101916

Farasat, M.; Khavari-Nejad, R.A.; Nabavi, S.M.B.; Namjooyan, F. 2014. Antioxidant activity, total phenolics and flavonoid contents of some edible green seaweeds from northern coasts of the Persian Gulf. Iranian Journal of Pharmaceutical Research, 13(1): 163-170.

Gensler, W.G. 1986. Advanced agricultural instrumentation: design and use. Dordrecht: Springer. https://doi.org/10.1007/978-94-009-4404-6

Glasson, C.R.K.; Sims, I.M.; Carnachan, S.M.; Nys, R.; Magnusson, M. 2017. Cascading biorefinery process targeting sulfated polysaccharides (ulvan) from Ulva ohnoi. Algal Research, 27: 83-391. https://doi.org/10.1016/j.algal.2017.07.001

Goodwin, T.W. 1962. Carotenoids, their comparative biochemistry. New York: Chemical Pub. Co.

Guaratini, T.; Cardozo, K.H.M.; Pinto, E.; Colepicolo, P. 2009. Comparison of Diode Array and Electrochemical Detection in the C30 Reverse Phase HPLC Analysis of Algae Carotenoids. Journal of Brazilian Chemistry Society, 20(9): 1609-1616. https://doi.org/10.1590/S0103-50532009000900007

Hiscox, J.D.; Israelstam, G.F. 1979. A Method for Extraction of Chlorophyll from Leaf Tissue without Maceration. Journal of Botanic, 57(12): 1332-1334. https://doi.org/10.1139/b79-163

Hoang, T.H.; Qin, J.G.; Stone, D.A.J.; Harris, J.O.; Duong, D.N.; Bansemer, M.S. 2016. Colour changes of greenlip abalone (Haliotis laevigata Donovan) fed fresh macroalgae and dried algal supplement. Aquaculture, 456: 16-23. https://doi.org/10.1016/j.aquaculture.2016.01.022

Imchen, T. 2012. Recruitment Potential of a Green Alga Ulva flexuosa Wulfen Dark Preserved Zoospore and Its Development. PLoS ONE, 7(3): e32651. https://doi.org/10.1371/journal.pone.0032651

Jamovi project. 2022. jamovi. (Version 2.3) [Computer Software]. Available at: https://www.jamovi.org. Accessed on: Oct. 24, 1995.

Kakinuma, M.; Coury, D.A.; Kuno, Y.; Kozawa, Y.; Inagaki, E.; Yoshiura, Y.; Amano, H. 2006. Physiological and biochemical responses to thermal and salinity stresses in a sterile mutant of Ulva pertusa (Ulvales, Chlorophyta). Marine Biology, 149(1): 97-106. https://doi.org/10.1007/s00227-005-0215-y

Kakinuma, M.; Kuno, Y.; Amano, H. 2004. Salinity stress responses of a sterile mutant of Ulva pertusa (Ulvales, Chlorophyta. Fisheries Science, 70(6): 1177-1179. https://doi.org/10.1111/j.1444 2906.2004.00921.x

Karnjanapratum, S.; You, S.G. 2011. Molecular characteristics of sulfated polysaccharides from Monostroma nitidum and their in vitro anticancer and immunomodulatory activities. International Journal of Biological Macromolecules, 48(2): 311-318. https://doi.org/10.1016/j.ijbiomac.2010.12.002

Khanjani, M.H.; Zahedi, S.; Mohammadi, A. 2022. Integrated multitrophic aquaculture (IMTA) as an environmentally friendly system for sustainable aquaculture: functionality, species, and application of biofloc technology (BFT). Environmental Science Pollution Research, 29(45): 67513-67531. https://doi.org/10.1007/s11356-022-22371-8

Khoi, L.V.; Fotedar, R. 2011. Integration of western king prawn (Penaeus latisulcatus kishinouye, 1896) and green seaweed (Ulva lactuca Linnaeus, 1753) in a closed recirculating aquaculture system. Aquaculture, 322-323: 201-209. https://doi.org/10.1016/j.aquaculture.2011.09.030

Lahaye, M.; Axelos, M.A.V. 1993. Gelling properties of watersoluble polysaccharides fromproliferating marine green seaweed (Ulva spp.). Carbohydrates Polymers, 22(4): 261-265. https://doi.org/10.1016/0144-8617(93)90129-R

Lapointe, B.E.; Tenore, K.R. 1981. Experimental outdoor studies with Ulva fasciata Delile. I. Interaction of light and nitrogen on nutrient uptake, growth, and biochemical composition. Journal of Experimental Marine Biology and Ecology, 53(2-3): 135-152. https://doi.org/10.1016/0022-0981(81)90015-0

Legarda, E.C.; Silva, D.; Miranda, C.S.; Pereira, P.K.M.; Martins, M.A.; Machado, C.; Lorenzo, M.A.; Hayashi, L.; Vieira, F.N. 2021. Sea lettuce integrated with Pacific white shrimp and mullet cultivation in biofloc impact system performance and the sea lettuce nutritional composition. Aquaculture, 534: 736265. https://doi.org/10.1016/j.aquaculture.2020.736265

Machado, H.; Nagem, T.J.; Peter, V.M.; Fonseca, C.S.; Oliveira, T.T. 2008. Flavonoids and potential therapeutic. Boletim do Centro de Biologia da Reprodução, 27(1-2): 33-39.

Martins, M.A.; Silva, V.F.; Tarapuez, P.R.; Hayashi, L.; Vieira, F.N. 2020 Cultivation of the seaweed Ulva spp. with effluent from a shrimp biofloc rearing system: Different species and stocking density. Boletim do Instituto de Pesca, 46(3): e602. https://doi.org/10.20950/1678-2305.2020.46.3.602

Morais, A.P.M.; Santos, I.L.; Carneiro, R.F.S.; Routledge, E.A.B.; Hayashi, L.; Lorenzo, M.A.; Vieira, F.N. 2023.

Integrated multitrophic aquaculture system applied to shrimp, tilapia, and seaweed (Ulva ohnoi) using biofloc technology. Aquaculture, 572: 739492. https://doi.org/10.1016/j.aquaculture.2023.739492

Naldi, M.; Viaroli, P. 2002. Nitrate uptake and storage in the seaweed Ulva rigida C. Agardh in relation to nitrate availability and thallus nitrate content in a eutrophic coastal lagoon (Sacca di Goro, Po River Delta, Italy). Journal of Experimental Marine Biology and Ecology, 269(1): 65-83. https://doi.org/10.1016/S0022-0981(01)00387-2

Nelson, S.G.; Glenn, E.P.; Conn, J.; Moore, D.; Walsh, T.; Akutagawa, M. 2001. Cultivation of Gracilaria parvispora (Rhodophyta) in shrimp-farm effluent ditches and floating cages in Hawaii: a two-phase polyculture system. Aquaculture, 193(3-4): 239-248. https://doi.org/10.1016/S0044-8486(00)00491-9

Notoya, M. 1999. Utilization of Ulva spp. and environmental restoration. Tokyo: Seizandou.

Ohno, M. 1988. Seasonal Changes of the Growth of Green Algae, Ulva sp. in Tosa Bay, Southern Japan. Marine fouling, 7(1-2): 13-17. https://doi.org/10.4282/sosj1979.7.13

Parekh, J.; Chanda, S.V. 2007. In vitro antimicrobial activity and phytochemical analysis of some Indian medicinal plants. Turkish Journal of Biology, 31(1): 53-58.

Paulert, R.; Talamini, V.; Cassolato, J.E.F.; Duarte, M.E.R.; Noseda, M.D.; Smania Junior, A.; Stadnik, M.J. 2009. Effects of sulfated polysaccharide and alcoholic extracts from green seaweed Ulva fasciata on anthracnose severity and growth of common bean (Phaseolus vulgaris L.). Journal of Plant Diseases and Protection, 116: 263-270. https://doi.org/10.1007/BF03356321

Pedra, A.G.M.; Ramlov, F.; Maraschin, M.; Hayashi, L. 2017. Cultivation of the red seaweed Kappaphycus alvarezii with effluents from shrimp cultivation and brown seaweed extract: Effects on growth and secondary metabolism. Aquaculture, 479: 297-303. https://doi.org/10.1016/j.aquaculture.2017.06.005

Peso-Echarri, P.; Frontela-Saseta, C.; González-Bermúdez, C.A.; Ros-Berruezo, G.F.; Martinez-Graciá, C. 2012. Polisacáridos de algas como ingredientes funcionales en acuicultura marina: alginato, carragenato y ulvano. Revista de Biología Marina y Oceagrafía, 47(3): 373-381. https://doi.org/10.4067/S0718-19572012000300001

Pitta, J.P.M.P.; Pontes, M.D.; Castelar, B.; Hamacher, C. 2022. Desempenho de curto prazo de Ulva fasciata produzida em diferentes densidades em aquicultura multitrófica integrada. Conjecturas, 22(9): 1-17. https://doi.org/10.53660/CONJ-1385-AG05

Qi, H.; Liu, X.; Zhang, J.; Duan, Y.; Wang, X.; Zhang, Q. 2012. Synthesis and antihyperlipidemic activity of acetylated derivative of ulvan from Ulva pertusa. International Journal of Biological Macromolecules, 50(1): 270-272. https://doi.org/10.1016/j.ijbiomac.2011.11.006

Ray, B.; Lahaye, M. 1995. Cell-wall polysaccharides from the marine green alga Ulva “rigida” (ulvales, chlorophyta). Extraction and chemical composition. Carbohydrate Research, 274: 252-261. https://doi.org/10.1016/0008-6215(95)00138-J

Raymundo, M.S.; Horta, P.; Fett, R. 2004. Atividade antioxidante in vitro de extratos de algumas algas verdes (Chlorophyta) do litoral catarinense (Brasil). Revista Brasileira Ciências Farmaceutica, 40(4): 495-503. https://doi.org/10.1590/S1516-93322004000400007

Revilla-Lovano, S.; Sandoval-Gil, J.M.; Zertuche-González, J.A.; Belando-Torrentes, M.D.; Bernardeau-Esteller, J.; Rangel-Mendoza, L.K.; Ferreira-Arrieta, A.; Guzmán-Calderón, J.M.; Camacho-Ibar, V.F.; Muñiz-Salazar, R.; Ávila-López, M.C. 2021. Physiological responses and productivity of the seaweed Ulva ohnoi (Chlorophyta) under changing cultivation conditions in pilot large land-based ponds. Algal Research, 56: 102316. https://doi.org/10.1016/j.algal.2021.102316

Randhir, R.; Shetty, P.; Shetty, K. 2002. L-Dopa and total phenolic stimulation in dark germinated fava bean in response to peptide and phytochemical elicitors. Process Biochemistry, 37(11): 1247-1256. https://doi.org/10.1016/S0032-9592(02)00006-7

Ronen, R.; Galun, M. 1984. Pigment extraction from lichens with dimethyl sulfoxide (DMSO) and estimation of chlorophyll degradation. Environmental and Experimental Botany, 24(3): 239-245. https://doi.org/10.1016/0098-8472(84)90004-2

Seal, T.; Halder, N.; Chaudhuri, K.; Sinha, S.N. 2015. Evaluation of antioxidant activities of algae and effect of solvent extraction system. International Journal of Pharmaceutical Sciences and Research, 6(3): 1273. https://doi.org/10.13040/IJPSR.0975-8232.6(3).1273-78

Sebök, S.; Herppich, W.B.; Hanelt, D. 2017. Development of an innovative ring-shaped cultivation system for a land-based cultivation of marine macroalgae. Aquacultural Engineering, 77: 33-41. https://doi.org/10.1016/j.aquaeng.2017.01.005

Silva, K.R.; Wasielesky Junior, W.; Abreu, P.C. 2013. Nitrogen and phosphorus dynamics in the biofloc production of the Pacific white shrimp, Litopenaeus vannamei. Journal of the World Aquaculture Society, 44(1): 30-41. https://doi.org/10.1111/jwas.12009

Stengel, D.B.; Connan, S.; Popper, Z.A. 2011. Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application. Biotechnology Advances, 29(5): 483-501. https://doi.org/10.1016/j.biotechadv.2011.05.016

Strickland, J.D.H.; Parsons, T.R. 1972. A practical handbook of seawater analysis. Ottawa: Fisheries Research Board of Canada. Thakur, D.P.; Lin, C.K. 2003. Water quality and nutrient budget in closed shrimp (Penaeus monodon) culture systems. Aquacultural Engineering, 27(3): 159-176. https://doi.org/10.1016/S0144-8609(02)00055-9

Troell, M.; Halling, C.; Neori, A.; Choppin, T.; Buschmann, A.H.; Kautsky, N.; Yarish, C. 2003. Integrated mariculture: asking the right questions. Aquaculture, 226(1-4): 69-90. https://doi.org/10.1016/S0044-8486(03)00469-1

Valente, L.M.P.; Rema, P.; Gouveia, A.; Matos, J. 2006. Evaluation of three seaweeds Gracilaria bursa-pastoris, Ulva rigida and Gracilaria cornea as dietary ingredients in European sea bass (Dicentrarchus labrax) juveniles. Aquaculture, 252(1): 85-91. https://doi.org/10.1016/j.aquaculture.2005.11.052

Van Wyk, P.; Scarpa, J. 1999. Water Quality and Management. In: Van Wyk, P.; Davis-Hodgkins, M.; Laramore, R.; Main, K.L.; Mountain, J.; Scarpa, J. (eds.). Farming Marine Shrimp in Recirculating Freshwater Systems. Tallahassee: Division of Aquaculture. pp. 128-138.

Xu, Y.; Fang, J.; Tang, Q.; Lin, J.; Le, G.; Liao, L.V. 2008a. Improvement of water quality by the macroalga, Gracilaria lemaneiformis (Rhodophyta), near aquaculture effluent outlets. Journal World Aquaculture Society, 39(4): 441-571. https://doi.org/10.1111/j.1749-7345.2008.00180.x

Xu, Y.; Fang, J.; Wei, W. 2008b. Application of Gracilaria lichenoides (Rhodophyta) for alleviating excess nutrients in aquaculture. Journal of Applied Phycology, 20(2): 199-203. https://doi.org/10.1007/s10811-007-9219-y

Yong, Y.S.; Yong, W.T.L.; Anton, A. 2013. Analysis of formulae for determination of seaweed growth rate. Journal of Applied Phycology, 25: 1831-1834. https://doi.org/10.1007/s10811-013-0022-7

Downloads

Published

2023-11-17

Issue

Section

Scientific Article

Most read articles by the same author(s)

1 2 > >>