NON-STARCH POLYSACCHARIDE IN DIETS FOR HYBRID SURUBIM: EFFECTS ON METABOLISM PLASTICITY

Authors

  • Daniela Ferraz Bacconi CAMPECHE Embrapa Semiárido
  • Douglas Henrique de Holanda ANDRADE Universidade Federal de Pernambuco, Departamento de Bioquí­­mica
  • Janilson Felix SILVA Universidade Federal de Pernambuco, Departamento de Bioquí­­mica
  • José Fernando Bibiano MELO Universidade Federal do Vale do São Francisco, Departamento de Zootecnia http://orcid.org/0000-0003-2068-4641
  • Ranilson de Souza BEZERRA Universidade Federal de Pernambuco, Departamento de Bioquí­­mica

DOI:

https://doi.org/10.20950/1678-2305.2019.45.3.443

Keywords:

adaptation, carnivorous, cornmeal, mango meal, physiology, Pseuplatystoma fasciatum x Pseudoplatystoma corruscans

Abstract

This study aimed to analyze the effect of mango meal, a non-starch polysaccharide, as a carbohydrate source on the metabolism plasticity and performance indicators for hybrid surubim (Pseudoplatystoma fasciatum x P. corruscans), a tropical carnivorous fish. Juveniles (±14.5g initial weight) were fed 3% of total biomass for 60 days in four experimental diets replacing 0, 33, 66 and 100% of the cornmeal. Growth by final weight was evaluated, but statistical differences (p<0.05) were not observed among the treatments. The activity of total alkaline protease was statistically lower in the fish group fed 100% cornmeal substitution. However, trypsin levels also decreased when 100% of the cornmeal was replaced by mango meal, but without statistical significance. Zymograms showed bands of protease and amylase activities for all treatments. Cholesterol (0%- 141.83±46.10; 100%- 71.36±14.40 mg.dL-1) and total protein (0%- 3.98±0.94; 100%- 1.70±1.03 mg.dL-1) in the plasma decreased as mango meal levels increased in the feed. On the other hand, glucose (0%- 105.08±31.24; 100%- 128.11±24.51 mg.dL-1) and free amino acids (0%- 24.51±2.62; 100%- 38.13±8.94 nmoles.ml-1) in the plasma increased. Although growth was not affected, the carbohydrate source affected fish metabolism, which showed metabolic adaptation by the species. The result suggests that mango meal can replace up to 33% of the cornmeal in diets for Pseudoplatystoma sp.

References

Adamidou, S.; Nengas, I.; Alexis, M.; Foundoulaki, E.; Nikolopoulou, D.;Campbell, P.; Karacostas, I.; Rigos, G.; Bell, G.J.; Jauncet, K. 2009. Aparent nutrient digestibility and gastrointestinal evacuation time in European seabass (Dicentrarchus labrax) fed diets containing different levels of legumes. Aquaculture, 289(1/2): 106-112. https://
doi.org/10.1016/j.aquaculture.2009.01.015

Almeida, L.C.; Avilez, I.M.; Honorato, C.A.; Hori, T.S.F.; Moraes, G. 2011. Growth and metabolic responses of tambaqui (Colossoma macropomum) fed diferente levels of protein and lipid. Aquaculture Nutrition, 17(2):
253-262. https://doi.org/10.1111/j.1365-2095.2010.00759.x

AOAC International. 1990. Methods of Analysis of the Association of the AOAC International, 15th. AOAC International, Arlington, VA.

Arslan, M.; Dabrowski, K.; Portella, M.C. 2009. Growth, fat content and fatty acid profile of South American catfish, surubim (Pseudoplatystoma fasciatum) juveniles fed live, commercial and formulated diets. Journal of Applied
Ichthyology, 25(1): 73-78. https://doi.org/10.1111/j.1439-0426.2008.01154.x

Besson, M.; Komen, H.; Aubin, J.; Boer, I.J.M.; Poelmam, M.; Quillet, M.; Vancoillie, C.; Vandeputte, M.; Arendonk, J.A.M. 2014. Economic values for growth and feed efficiency for fish farming in recirculating aquaculture system with density and nitrogen output limitations: a case study with African catfish (Clarias garipineaus). Journal of Animal Science, 92(12): 5394-5405. https://doi.org/10.2527/jas.2014-8266

Bezerra, R.S.; Lins, E.J.F.; Alencar, R.B.; Paiva, P.M.G.; Chaves, M.E.C.;Coelho, L.C.B.B.; Ccarvalho-Junior, L.B. 2005. Alkaline proteinase from intestine of Nile tilapia (Oreochromis niloticus). Process Biochemistry,40(5): 1829-1834. https://doi.org/10.1016/j.procbio.2004.06.066

Bernfeld, P. 1955. Amylases, alpha and beta. In: Colowick SP, Kaplan NO (Eds.).Methods in enzymology. Academic Press, New York, NY. p. 149-158.

Bidinotto, P.M.; Moraes, G.; Souza, R.H.S. 1997. Hepatic glycogen in eight tropical fresh water teleost fish: a procedure for field determinations of micro samples. Boletim Técnico do CEPTA, 10(1): 53-60.

Booth, M.A.; Moses, M.D.; Allan, G.L. 2013. Utilization of carbohydrate by yellowtail kingfish Seriola lalandi. Aquaculture, 376-379: 151-161. https://doi.org/10.1016/j.aquaculture.2012.11.024

Castro, C.; Corraze, G.; Pérez-Jiménez, A.; Larroquet, L.; Cluzeaud, M.; Panserat, S.; Oliva-Teles, A. 2015. Dietary carbohydrate and lipid source affect cholesterol metabolism of European sea bass (Dicentrarchus labrax) juveniles. British Journal of Nutrition, 114: 1143-1156. https://doi.org/10.1017/S0007114515002731

Chacrabarti, I.; Gani, M.A.; Chaki, K.K.; Sur, R.; Misra, K.K. 1995. Digestive enzymes in 11 freswater teleost fish species in relation to food habit and niche segregation. Comparative Biochemistry Physioly í  Part A Physioly, 112(1): 167-177.

Copley, N. G. 1941. Alloxan and ninhydrin test. Analyst, 66: 492-493.

Correa, C.F.; Aguiar, L.H.; Lundestedt, M.L.; Moraes, G. 2007. Responses of digestive enzymes of tambaqui (Colosomma macropomum) to dietary corn starch changes and metabolic inferences. Comparative Biochemistry Physiology - Part A í  Physiology, 147(4): 857-862. https://doi.org/10.1016/j.cbpa.2006.12.045

Couto, A.; Enes, P.; Peres, H.; Oliva-Teles, A. 2012. Temperature and dietary starch level affected protein but not starch digestibility in gilthead sea bream juveniles. Fish Physiology and Biochemistry, 38(3): 595-601. https://doi.org/10.1007/s10695-011-9537-5

Dabrowski, K.; Portella, M.C. 2006. Feeding plasticity and nutritional physiology in tropical fishes. In: Val A L, Val V M F de A, Randall D J (Eds.) The physiology of tropical fishes. Elsevier, Amsterdam, Netherlands. p. 155-224.

Enes, P.; Panserat, S.; Kaushik, S. 2009. Nutritional regulation of hepatic glucose metabolism in fish. Fish Physiology and Biochemistry, 35(3):519-539. https://doi.org/10.1007/s10695-008-9259-5

Enes, P.; Peres, H.; Pousão-Ferreira, P.; Sanches-Gurmaches, J.; Navarro, I.;Gutiérrez, J.; Oliva-Teles, A. 2012. Glycemic and insulin responses in white sea bream Diplodus sargus, after intraperitoneal administration
of glucose. Fish Physiology and Biochemistry, 38(3): 645-652.https://doi.org/10.1007/s10695-011-9546-4

Enes, P.; Pousão-Ferreira, P.; Salmerón, C.; Capilla, E.; Navarro, I.; Gutiérrez, J.;Oliva-Teles, A. 2013. Effect of guar gum on glucose and lipid metabolism in white sea bream Diplodus sargus. Fish Physiology and Biochemistry,
39(2): 159-169. https://doi.org/10.1007/s10695-012-9687-0

FAO. 2013. Food and agriculture organization of the United Nations statistics. FAO, Rome.

Fernández, I.; Moyano, F.J.; Diaz, M.; Martinez, T. 2001. Characterization of [alpha]-amylase activity in five species of Mediterranean sparid fishes (Sparidae, Teleostei). Journal of Experimental Marine Biology and Ecology, 262(1): 1-12. https://doi.org/10.1016/S0022-0981(01)00228-3

Francis, G.; Makkar, H.P.S.; Becker, K. 2001. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish.Aquaculture, 199(3/4): 197-227. https://doi.org/10.1016/S0044-
8486(01)00526-9

Fuentealba, C.; Bera, M.; Jessen, B.; Sace, F.; Stevens, G.J.; Trajkovic, D.;Yang, A.H.; Evering, W. 2011. Evaluation of the effects of a VEGFR-2 inhibitor compound of alanine aminotransferase gene expression and enzymatic activity in the rat liver. Comparative Hepatology, 10(8): 1-8. https://doi.org/10.1186/1476-5926-10-8

Gatesoupe, F.J.; Huelvan, C.; Bayon, N.L.; Severe, A.; Aasen, I.M.; Degnes,K.F.; Mazurais, D.; Panserat, S.; Zambinino-Infante, J.; Kaushik, S.J. 2014. The effects of dietary carbohydrate sources and forms on metabolic response and intestinal microbiota in sea bass juveniles, Dicentrarchus labrax. Aquaculture 422-423: 47-53. https://doi.org/10.1016/j.aquaculture.2013.11.011

Garcia-Carreí­±o, F.L.; Dimes, L.E; Haard, N.F. 1993. Substrate-gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors. Analytical Biochemistry, 214(1): 65-69.

Garcia-Magaí­±a, M.L.; Garcia, H.S.; Bello-Pérez, L.A.; Sayago-Ayerdi,S.G.; Oca, M.M.M. 2013. Functional properties and dietary fiber characterization of mango processing by-products (Mangifera indica L., cv. Ataulfo and Tommy Atkins). Plant Foods for Human Nutrition, 68(3): 254-258. https://doi.org/10.1007/s11130-013-0364-y

Hiller, A.; Greif, B.L.; Beckman, W.W. 1948. Determination of protein in urine by the biuret method. Journal of Biological Chemistry, 176(3) 1421-1429.

IBGE í  Instituto Brasileiro de Geografia e Estatí­­stica í  Produção da Pecuária Municipal. 2016.

Kamalan, B.S.; Medale, F.; Kaushik, S.; Polakof, S.; Skiba-Cassy, S.; Panserat, S. 2012. Regulation of metabolism by dietary carbohydrates in two lines of rainbow trout divergently selected for muscle fat content. Journal of Experimental Biology, 215(15): 2567-2578.https://doi.org/10.1242/jeb.070581

Kamalan, B.S.; Medale, F.; Panserat, S. 2017. Utilisation of dietary carbohydrate in farmed fishes: New insights on influencing factors, biological limitations and future strategies. Aquaculture, 467: 3- 27. http://dx.doi.org/10.1016/j.aquaculture.2016.02.007

Kassahun, A.; Waidbacher, H.; Zollitsch, W. 2012. Proximate composition of selected potential feedstuffs for small-scale aquaculture in Ethiopia. Livestock Research Rural Development, 24: 6.

Krogdahl, A.; Sundby, A.; Olli, J.J. 2004. Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) digest and metabolize nutrients differently. Effects of water salinity and dietary starch level. Aquaculture 229(1/4): 335-360. https://doi.org/10.1016/S0044-8486(03)00396-X

Kumar, S.; Sahu, N.P.; Pal, A.K.; Sagar, V.; Sinha, A.K.; Baruah, K. 2009. Modulation of key metabolic enzyme of Labeo rohita (Hamilton) juvenile: effect of dietary starch type, protein level and exogenous α-amylase in the diet. Fish Physiology and Biochemistry, 35(2): 301-315. https://doi.org/10.1007/s10695-008-9213-6

Kumar, V.; Sahu, N.P.; Pal. A.K.; Kumar, S.; Ranjan, L.; Baruah, K. 2010.Modulation of key enzymes of glycolysis, gluconeogenesis, amino acid catabolism, and TCA cycle of the tropical freshwater fish Labeo rohita fed gelatinized and non-gelatinized starch diet. Fish Physiology and Biochemistry, 10(3): 491-499. https://doi.org/10.1007/s10695-009-9319-5

Lemieux, H.; Blier, P.; Dutil, J.D. 1999. Do digestive enzymes set a physiological limit on growth rate and food conversion efficiency in the Atlantic Cod (Gadus morhua)? Fish Physiology and Biochemistry 20(4): 293-303.

Li, X.F.; Wang, W.B.; Liu, G.Z.; Zu, J.J. 2013. Effects of dietary carbohydrate/lipid ratios on growth performance, body composition and glucose metabolism of fingerling blunt snout bream Megalobrama amblycephala. Aquaculture Nutrition, 19(5): 701-708. https://doi.org/10.1111/anu.12017

Lin, S.; Mai, K.; Tan, B. 2010. Effects of four vegetable protein supplementation on growth, digestive enzyme activities, and liver functions of juvenile Tilapia, Oreochromis niloticus x Oreochromis aureus. Journal of the World Aquaculture Society, 41(4): 583-593.https://doi.org/10.1111/j.1749-7345.2010.00398.x

Lundstedt, L.M.; Melo, J.F.B.; Moraes, G. 2004. Digestive enzymes and metabolic profile of Pseudoplatystoma corruscans (Teleostei: Siluriformes) in response to diet composition. Comparative Biochemistry and Physiology. B, Biochemistry & Molecular Biology,137(3): 331-339. https://doi.org/10.1016/j.cbpc.2003.12.003

Makkar, H.P.S. 2000. Quantification of tannins in tree foliage: A laboratory manual. FAO/IAEA Edition, Vienna.

Men, K.; Ai, Q.; Mai, K.; Xu, W.; Zhang, Y.; Zhou, H. 2014. Effects of dietary corn gluten meal on growth, digestion and protein metabolism in relation to IGF- I gene expression of Japanese seabass, Lateolabrax japonicus. Aquaculture, 428-429: 303-309. http://dx.doi.org/10.1016/j.aquaculture.2014.03.028

Meshcheryakova, O.V.; Churova, M.V.; Nemova, N.N. 2016. Correlation between the activity of enzymes involved in energy and carbohydrate metabolism with size and weight parameters of some Coregonidae and Salmonidae fish. Contemporary Problems of Ecology, 9(2): 203-209. https://doi.org/10.1134/S1995425516020050

Meriac, A.; Eding, E.H.; Schrama, J.; Kamstra, A.; Verreth, J.A.J. 2014. Dietary carbohydrate composition can change waste production and biofilter load in recirculating aquaculture systems. Aquaculture 420- 421: 254-261. https://doi.org/10.1016/j.aquaculture.2013.11.018

Melo, J.F.B.; Lundestedt, L.M.; Tavares-Dias, M.; Moraes, G. 2006. Efeito do conteúdo de proteí­­na na dieta sobre os parí­¢metros hematológicos e metabólicos do bagre Sul Americano Rhamdia quelen. Revista Ciência Agroambiental, 1(1): 43-52.

Melo, J.F.B.; Lundestdt, L.M.; Moraes, G.; Inoue, L.A.K.A. 2012. Effect of different concentrations of protein on digestive system of juvenile silver catfish. Arquivos Brasileiros de Medicina Veterinária e Zootecnia, 64(2): 450-457. http://dx.doi.org/10.1590/S0102-09352012000200027

Moon, T.W. 2001. Glucose intolerance in teleost fish: fact or fiction?Comparative Biochemistry and Physiol - Part B í  Biochemistry and Molecular Biology, 129(2/3): 243-249. https://doi.org/10.1016/S1096-4959(01)00316-5

Moyano, F.J.; Cardente, G.; Higuera, M. 1991. Nutritive and metabolic utilization of proteins with glutamic acid content by the rainbow trout Oncorhynchus mykiss. Comparative Biochemistry and Physiology -Part A í  Physiology, 100(3): 759-762.

Pereira, L.G.R.; Aragão, A.L.S.; Santos, R.D.; Azevedo, J.A.G.; Neves, A.L.A.; Ferreira, A.L.; Chizzotti, M.L. 2013. Productive performance of confined sheep fed mango meal. Arquivos Brasileiros de Medicina Veterinaria e Zootecnia, 65(3): 675-680. http://dx.doi.org/10.1590/S0102-09352013000300009

Pérez-Jimenes, A.; Cardenete, G.; Morales, A. E.; Garcí­­a-Alcázar, A.; Abellán, E.; Hidalgo, M.C. 2009. Digestive enzymatic profile of Dentex dentex and response to different dietary formulations.Comparative Biochemistry and Physiology - Part A: Molecular and Integrative Physiology, 154 (1):157-164. https://doi.org/10.1016/j.cbpa.2009.05.126

Polakof, S.; Panserat, S.; Soengas, J.L.; Moon, T.W. 2012. Glucose metabolism in fish: a review. Journal of Comparative Physiology B,182(8): 1015-1045. https://doi.org/10.1007/s00360-012-0658-7

Song, M. Q.; Chao-Ming, S.; MeiLin, S.; JunChen, Y.; MianShen, H.; Luo, L. 2018. Effect of starch sources on growth, hepatic glucose metabolism and antioxidant capacity in juvenile largemouth bass,Micropterus salmoides. Aquaculture, 490(1): 355-361. https://doi.org/10.1016/j.aquaculture.2018.03.002

Rêgo, M.M.T; Neiva, J.N.M.; Rêgo, A.C.; Candido, M.J.D.; Carneiro,M.S.S.; Lobo, R.N.B. 2010. Chemical and bromatological characteristics of elephant grass silages containg a mango byproduct. Revista Brasileira de Zootecnia, 39(1): 81-87. http://dx.doi.org/10.1590/S1516-35982010000100011

Ren, M.; Ai, Q.; Mai, Q.; Ma, H.; Wang, X. 2011. Effect of dietary carbohydrate level on growth performance, body composition, apparent digestibility coefficient and digestive enzymes activities of juvenile cobia, Rachycentron canadum L. Aquaculture Research, 42(10):1467-1475. https://doi.org/10.1111/j.1365-2109.2010.02739.x

Salgado, J.M.; Curte, F.; Mansi, D.N. 2008. Effect of gala apples (Malus domestica Borkh) on lipidemia of hyperlipidemic rats. Ciência e Tecnologia de Alimentos, 28(2): 477-484. http://dx.doi.org/10.1590/S0101-20612008000200032

Santos, J.F.; Castro, P.F.; Leal, A.L.G.; Freitas-Junior, A.C.V.; Lemos, D.;Carvalho-Junior, L.B.; Bezerra, R.S. 2013. Digestive enzyme activity in juvenile Nile tilapia (Oreochromis niloticus, L.) submitted to different dietary levels of shrimp protein hydrolysate. Aquaculture International, 21(3): 563-577. https://doi.org/10.1007/s10499-012-9589-2

Saravanan, S.; Schrama, J.W.; Figueiredo-Silva, A.C.F.; Kaushik, S.J.; Verreth, J.A.J.; Geurden, I. 2012. Constraint on energy intake in fish: the link between diet composition, energy metabolism, and energy intake in raibow trout. Plos One 7:e34743. https://doi.org/10.1371/journal.pone.0034743

Siddhuraju, P.; Becker, K. 2001. Preliminary nutritional evaluation of Mucuna seed meal (Mucuna pruriens var. utilis) in commom carp (Ciprinus carpio L.): an assessment by growth performance and feed utilisation. Aquaculture, 196 (1-2): 105-123. https://doi.org/10.1016/S0044-8486(00)00577-9

Souza, R.C.; Melo, J.F.B.; Nogueira-Filho, R.M.; Campeche, D.F.B.;Figueiredo, R.R.C.C.R. 2013. Influência da farinha de manga no crescimento e composição corporal da tilápia do Nilo. Archivos de Zootecnia, 62(238): 217-225.

Souza, A.M.; Campeche, D.F.B.; Moraes, G.; Melo, F.V.S.T.; Neto-Cruz, M.A.; Melo, J.F.B. 2018. Replacing cornmeal with mango meal in diets for juvenile tambaqui Colossoma macropomum: growth and metabolic parameters. Boletim do Instituto de Pesca, 44(3): 1-7.https://doi.org/10.20950/1678-2305.2018.248

Sunde, J.; Taranger, J.L.; Rungruangsak-Torrisen, K. 2001. Digestive proteases activities and free amino acids in white muscle as indicators for feed conversion efficiency and growth rate in Atlantic salmon (Salmo salar L.). Fish Physiology and Biochemistry, 25(4): 335-345.https://doi.org/10.1023/A:1023233024001

Torrisen-Rungruangsak, K.; Moss, R.; Andresen, L.H.; Berg, A.; Waabo, R. 2006. Different expressions of trypsin and chymotrypsin in relation to growth in Atlantic salmon (Salmo salar L.). Fish Physiology and Biochemistry, 32(1): 7-23. https://doi.org/10.1007/s10695-005-0630-5

Ye, W.; Han, D.; Zhu, X.; Yang, Y.; Jin, J.; Xie, S. 2016. Comparative study on dietary protein requirements for juvenile and pre‐adult gibel carp (Carassius auratus gibelio var. CAS III). Aquaculture Nutrition,23(4): 755-765. https://doi.org/10.1111/anu.12442

Yengkokpam, S.; Sahu, N.P.; Pal, A.K.; Mukherjee, S.C.; Debnath, D. 2006.Gelatinezed carbohydrates in the diet of Catla catla fingerlings: effect of levels and sources on nutrient utilization, body composition and tissue
enzyme activities. Asian-Australian Journal of Animal Science, 20: 89-99.

Youself, M.I.; Awad, T.I.; Mohamed, E.H. 2006. Deltamethrin-induced oxidative damage and biochemical alterations in rat and its attenuation by Vitamin E. Toxicology, 227(3): 240-247. https://doi.org/10.1016/j. tox.2006.08.008

Zhang, N.; Huang, C.; Ou, S. 2011. In vitro binding capacities of three dietary fibers and their mixture for four toxic elements, cholesterol and bile acids. Journal of Hazardous Materials, 186(1): 236-239. https:// doi.org/10.1016/j.jhazmat.2010.10.120

Zheng, Q.; Wen, X.; Han, C. 2012. Effect of replacing soybean meal with cottonseed meal on growth, hematology, antioxidant enzymes activity and expression for juvenile grass carp, Ctenopharyngodon idellus. Fish Physiology and Biochemistry, 38(4): 1059-1069. https://doi.org/10.1007/s10695-011-9590-0

Published

2019-09-02

Most read articles by the same author(s)