ATIVIDADE ANTIMICROBIANA IN VITRO DO CARVACROL CONTRA PATÓGENOS DE CAMARí­-ES E SEU USO COMO ADITIVO ALIMENTAR NA DIETA DO CAMARÃO-BRANCO-DO-PACÍFICO

Autores

DOI:

https://doi.org/10.20950/1678-2305/bip.2021.47.e645

Palavras-chave:

aquaculture;, Litopenaeus vannamei;, essential oil;, food additive;, Vibrio.

Resumo

O objetivo do presente estudo foi avaliar o efeito in vitro do carvacrol contra diferentes microrganismos de importí­¢ncia na carcinicultura e o seu efeito in vivo no desempenho zootécnico, imunológico, microbiológico e na resistência de Litopenaeus vannamei desafiados com Vibrio parahaemolyticus. A atividade antimicrobiana do carvacrol foi realizada in vitro pela análise da concentração inibitória mí­­nima (CIM) e por disco de difusão em ágar, com bactérias Gram-negativas e Gram-positivas. Para o experimento in vivo foram adicionadas diferentes concentrações do carvacrol (1, 3, 4 e 6 mg mL-1) na alimentação dos camarões e uma dieta controle. Após quatro semanas, foram avaliados parí­¢metros zootécnicos, imunológicos, microbiológicos e a resistência dos animais desafiados com V. parahaemolyticus. A CIM de Vibrio alginolyticus e Vibrio harveyi foi de 0,078 mg mL-1, enquanto nas demais bactérias foi de 0,156 mg mL-1 de carvacrol. Os maiores halos de inibição foram observados em V. parahaemolyticus e Vibrio harveyi e demonstraram diferenças significativas em relação aos demais microrganismos, exceto Escherichia coli. Os resultados in vivo não demonstraram diferenças significativas entre os tratamentos. Em conclusão, a atividade antimicrobiana do carvacrol foi confirmada com bactérias Gram-negativas e Gram-positivas e sugere-se que seu potencial antimicrobiano seja mais eficaz contra Vibrio spp. No entanto, as concentrações de carvacrol utilizadas in vivo não afetaram os parí­¢metros avaliados.

Referências

ABCC - Associação Brasileira de Criadores de Camarão. 2017. Vamos reforçar a defesa sanitária do Brasil ou vamos permitir a importação de camarão do Equador?, (1): 18. Disponivel em <https://abccam.com.br/wp-content/uploads/2017/06/revista-abcc-edi%c3%87%c3%83o-junho-2017.pdf>. Acessado em 16 set., 2020.

AOAC - Association of Official Agricultural Chemists. 2005. Official methods of analysis of AOAC International. 18th ed. AOAC International Ed. Maryland, USA, 1094 p.

Abutbul, S.; Golan-Goldhirsh, A.; Zilberg, D. 2004. Use of Rosmarinus officinalis as a treatment against Streptococcus iniae in tilapia (Oreochromis sp.). Aquaculture, 238(1í 4): 97í 105. https://dx.doi.org/10.1016/j.aquaculture.2004.05.016.

Ahmadifar, E.; Falahatkar, B.; Akrami, R. 2011. Effects of dietary thymol-carvacrol on growth performance, hematological parameters and tissue composition of juvenile rainbow trout, Oncorhynchus mykiss. Journal of Applied Ichthyology, 27(4): 1057í 1060. https://dx.doi.org/10.1111/j.1439-0426.2011.01763.x.

Araujo, M.M.; Longo, P.L. 2016. Teste da ação antibacteriana in vitro de óleo essencial comercial de Origanum vulgare (orégano) diante das cepas de Escherichia coli e Staphylococcus aureus. Arquivos do Instituto Biológico, 83: 1í 7. https://dx.doi.org/10.1590/1808-1657000702014.

Astashkina, A.; Mann, B.; Grainger, D.W. 2012. A critical evaluation of in vitro cell culture models for high-throughput drug screening and toxicity. Pharmacology and Therapeutics, 134 (1): 82í 106. https://dx.doi.org/10.1016/j.pharmthera.2012.01.001.

Baruah, K.; Norouzitallab, P.; Phong, H.P.PD.; Smagghe, G.; Bossier, P. 2017. Enhanced resistance against Vibrio harveyi infection by carvacrol and its association with the induction of heat shock protein 72 in gnotobiotic Artemia franciscana. Cell Stress and Chaperones, 22(3): 377í 387. https://dx.doi.org/10.1007/s12192-017-0775-z.

Bimczok, D.; Rau, H.; Sewekow, E.; Janczyk, P.; Souffrant, W.B.; Rothkí­¶tter, H.J. 2008. Influence of carvacrol on proliferation and survival of porcine lymphocytes and intestinal epithelial cells in vitro. Toxicology in Vitro, 22(3): 652í 658. https://dx.doi.org/10.1016/j.tiv.2007.11.023.

Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72 (1í 2): 248í 254. https://dx.doi.org/10.1016/0003-2697(76)90527-3.

Carvalho, R.I.; Medeiros, A.S.J.; Chaves, M.; Souza, E.L.; Magnani, M. 2018. Lipids, pH, and their interaction affect the inhibitory effects of carvacrol against Salmonella Typhimurium PT4 and Escherichia coli O157:H7. Frontiers in Microbiology, 8: 2701. https://dx.doi.org/10.3389/fmicb.2017.02701.

Chakraborty, S.B.; Hancz, C. 2011. Application of phytochemicals as immunostimulant, antipathogenic and antistress agents in finfish culture. Reviews in Aquaculture, 3(3): 103í 119. https://dx.doi.org/10.1111/j.1753-5131.2011.01048.x.

Chavan, P.S.; Tupe, S.G. 2014. Antifungal activity and mechanism of action of carvacrol and thymol against vineyard and wine spoilage yeasts. Food Control, 46: 115í 120. https://dx.doi.org/10.1016/j.foodcont.2014.05.007.

Cosentino, S.; Tuberoso, C.I.G.; Pisano, B.; Satta, M.; Mascia, V.; Arzedi, E.; Palmas, F. 1999. In-vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Letters in Applied Microbiology, 29(2): 130í 135. https://dx.doi.org/10.1046/j.1472-765X.1999.00605.x.

Fang, S.; Zhou, Q.; Hu, Y.; Liu, F.; Mei, J.; Xie, J. 2019. Antimicrobial carvacrol incorporated in flaxseed gum-sodium alginate active films to improve the quality attributes of Chinese sea bass (Lateolabrax maculatus) during cold storage. Molecules, 24(18): 1í 17. https://dx.doi.org/10.3390/molecules24183292.

FAO - Food and Agriculture Organization of the United Nations, 2020. The state of world fisheries and aquaculture 2020: sustainability in action. Rome: SOFIA. Available from: <http://www.fao.org/documents/card/en/c/ca9229en/> Accessed: 10 Nov., 2020.

FDA - Food and Drug Administration. 2017. CRF - Code of federal regulations title 21, 3: 25 - 26.

Garrett, W.S.; Gordon, J.I.; Glimcher, L.H. 2010. Homeostasis and Inflammation in the Intestine. Cell, 140 (6): 859í 870. https://dx.doi.org/10.1016/j.cell.2010.01.023.

Gilles, M.; Zhao, J.; Na, M.; Agboola, S. 2010. Chemical composition and antimicrobial properties of essential oils of three Australian Eucalyptus species. Food Chemistry, 119(2): 731í 737. https://dx.doi.org/10.1016/j.foodchem.2009.07.021.

Gong, H.; Lawrence, A.L.; Jiang, D.H.; Castille, F.L.; Gatlin, D.M. 2000. Lipid nutrition of juvenile Litopenaeus vannamei: I. Dietary cholesterol and de-oiled soy lecithin requirements and their interaction. Aquaculture, 190(3í 4): 305í 324. https://dx.doi.org/10.1016/S0044-8486(00)00414-2.

Gracia-Valenzuela, M.H.; Vergara-Jiménez, M.J.; Baez-Flores, M.E.; Cabrera-Chavez, F. 2014. Antimicrobial effect of dietary oregano essential oil against vibrio bacteria in shrimps. Archives of Biological Sciences, 66(4): 1367í 1370. https://dx.doi.org/10.2298/ABS1404367G.

Guarda, A.; Rubilar, J.F.; Miltz, J.; Galotto, M.J. 2011. The antimicrobial activity of microencapsulated thymol and carvacrol. International Journal of Food Microbiology, 146(2): 144í 150. https://dx.doi.org/10.1016/j.ijfoodmicro.2011.02.011.

Guimarães, A.G.; Oliveira, G.F.; Melo, M.S.; Cavalcanti, S.C.H.; Antoniolli, A.R.; Bonjardim, L.R.; Silva, F.A.; Santos, J.P.; Rocha, R.F.; Moreira, J.C. F.; Araujo, A.A.S.; Gelain, D.P.; Quintans-junior, L.J. 2010. Bioassay-guided evaluation of antioxidant and antinociceptive activities of carvacrol. Basic and Clinical Pharmacology and Toxicology, 107(6): 949í 957. https://dx.doi.org/10.1111/j.1742-7843.2010.00609.x.

Hajlaoui, H.; Snoussi, M.; Noumi, E.; Zanetti, S.; Ksouri, R.; Bakhrouf A. 2010. Chemical composition, antioxidant and antibacterial activities of the essential oils of five Tunisian aromatic plants. Italian Journal of Food Science, 22(3): 320í 329.

Inamuco, J.; Veenendaal, A.K.J.; Burt, S.A.; Post, J.A.; Bokhoven, J.L.M.T.V.; Haagsman, H.P.; Veldhuizen, E.J.A. 2012. Sub-lethal levels of carvacrol reduce Salmonella Typhimurium motility and invasion of porcine epithelial cells. Veterinary Microbiology, 157(1í 2): 200í 207. https://dx.doi.org/10.1016/j.vetmic.2011.12.021.

Knobloch, K.; Pauli, A.; Iberl, B.; Weigand, H.; Weis, N. 1989. Antibacterial and Antifungal Properties of Essential Oil Components. Journal of Essential Oil Research, 1(3): 119-128. https://dx.doi.org/10.1080/10412905.1989.9697767.

Lemos, M.F.; Lemos, M.F.; Pacheco, H.P.; Guimarães, A.C.; Fronza, M.; Endringer, D.C.; Scherer, R. 2017. Seasonal variation affects the composition and antibacterial and antioxidant activities of Thymus vulgaris. Industrial Crops and Products, 95: 543í 548. https://dx.doi.org/10.1016/j.indcrop.2016.11.008.

Lima, D.S.; Lima, J.C.; Calvacanti, R.M.C.B.; Santos, B.H.C.; Lima, I.O. 2017. Estudo da atividade antibacteriana dos monoterpenos timol e carvacrol contra cepas de Escherichia coli produtoras de β-lactamases de amplo espectro. Revista Pan-Amazônica de Saúde, 8(1): 17í 21. http://dx.doi.org/10.5123/s2176-62232017000100003.

Maggioni, D.S; Andreatta, E.R.; Hermes, E.M.; Barracco, M.A. 2004. Evaluation of some hemato-immunological parameters in female shrimp Litopenaeus vannamei submitted to unilateral eyestalk ablation in association with a diet supplemented with superdoses of ascorbic acid as a form of immunostimulation. Aquaculture, 241(1í 4): 501í 515. https://dx.doi.org/10.1016/S0044-8486(03)00530-1.

Marinelli, L.; Stefano, A.D.; Cacciatore, I. 2018. Carvacrol and its derivatives as antibacterial agents. Phytochemistry Reviews, 17(4): 903í 921. https://dx.doi.org/10.1007/s11101-018-9569-x.

NCCLS - National Committee for Clinical Laboratory Standards. 2006. Methods for Broth Dilution Susceptibility Testing of Bacteria Isolated from Aquatic Animals; Approved Guideline. NCCLS document M49-A, 26. Wayne, Pennsylvania, U.S.A.

Nevas, M.; Korhonen, A.R.; Lindstrí­¶m, M.; Turkki, P.; Korkeala, H. 2004. Antibacterial efficiency of Finnish spice essential oils against pathogenic and spoilage bacteria. Journal of food protection, 67(1): 199í 202. https://dx.doi.org/10.4315/0362-028X-67.1.199.

Nostro, A.; Blanco, A.R.; Cannatelli, M.A.; Enea, V.; Flamini, G.; Morelli, I.; Roccaro, A.S.; Alonzo, V. 2004. Susceptibility of methicillin-resistant staphylococci to oregano essential oil, carvacrol and thymol. FEMS Microbiology Letters, 230(2): 191í 195. https://dx.doi.org/10.1016/S0378-1097(03)00890-5.

Nostro, A.; Cellini, L.; Zimbalatti, V.; Blanco A.R.; Marino, A.; Pizzimenti, F.; Giulio, M.D.; Bisignano, G. 2012. Enhanced activity of carvacrol against biofilm of Staphylococcus aureus and Staphylococcus epidermidis in an acidic environment. Acta pathologica, microbiologica et immunologica scandinavica, 120(12): 967í 973. https://dx.doi.org/10.1111/j.1600-0463.2012.02928.x.

NRC - National Research Council. 2011. Nutrient Requirements of Fish and Shrimp. Washington: National Academies Press, 390p.

Rattanachaikunsopon, P.; Phumkhachorn, P. 2009. Prophylactic effect of Andrographis paniculata extracts against Streptococcus agalactiae infection in Nile tilapia (Oreochromis niloticus). Journal of Bioscience and Bioengineering, 107(5): 579í 582. https://dx.doi.org/10.1016/j.jbiosc.2009.01.024.

Rattanachaikunsopon, P.; Phumkhachorn, P. 2010. Assessment of synergistic efficacy of carvacrol and cymene against Edwardsiella tarda in vitro and in Tilapia ( Oreochromis niloticus). African Journal of Microbiology Research, 4(5): 420í 425.

Ray, A.J.; Lewis, B.L.; Browdy, C.L.; Leffler, J.W. 2010. Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant-based feed in minimal-exchange, superintensive culture systems. Aquaculture, 299(1í 4): 89í 98. https://dx.doi.org/10.1016/j.aquaculture.2009.11.021.

Rombout J.H.W.M.; Abelli, L.; Picchietti, S.; Scapigliati, G.; Kiron, V. 2011. Teleost intestinal immunology. Fish and Shellfish Immunology, 31(5): 616í 626. https://dx.doi.org/10.1016/j.fsi.2010.09.001.

Roselli, M.; Britti, M.S.; Huí­«rou-Luron, I.L.; Marfaing, H.; Zhu, W.Y.; Mengheri, E. 2007. Effect of different plant extracts and natural substances (PENS) against membrane damage induced by enterotoxigenic Escherichia coli K88 in pig intestinal cells. Toxicology in Vitro, 21(2): 224í 229. https://dx.doi.org/10.1016/j.tiv.2006.09.012.

Samy, R.P.; Gopalakrishnakone, P. 2010. Therapeutic potential of plants as anti-microbials for drug discovery. Evidence-based Complementary and Alternative Medicine, 7(3): 283í 294. https://dx.doi.org/10.1093/ecam/nen036.

Sánchez, C.; Aznar, R.; Sánchez, G. 2015. The effect of carvacrol on enteric viruses. International Journal of Food Microbiology, 192: 72í 76 https://dx.doi.org/10.1016/j.ijfoodmicro.2014.09.028.

Santos, H.M.; Tsai, C.; Maquiling, K.R.A.; Tayo, L.L.; Mariatulqabtiah, A.R.; Lee, C.; Chuang, K.P. 2020. Diagnosis and potential treatments for acute hepatopancreatic necrosis disease (AHPND): a review. Aquaculture International, 28: 169-185. https://dx.doi.org/10.1007/s10499-019-00451-w.

Sikkema, J.; Bont, J.A.; Poolman, B. 1995. Mechanisms of membrane toxicity of hydrocarbons. Microbiological review, 59: 201í 222.

Snoussi, M.; Hajlaoui, H.; Noumi, E.; Usai, D.; Sechi, L.A.; Zanetti, S.; Bakhrouf, A. 2008. In-vitro anti-Vibrio spp. activity and chemical composition of some Tunisian aromatic plants. World Journal of Microbiology and Biotechnology, 24(12): 3071í 3076. https://dx.doi.org/10.1007/s11274-008-9848-6.

Sí­¶derhí­¤ll, K.; Hí­¤ll, L. 1984. Lipopolysaccharide-induced activation of prophenoloxidase activating system in crayfish haemocyte lysate. Biochimica et Biophysica Acta (BBA) - General Subjects, 797(1): 99í 104. https://dx.doi.org/10.1016/0304-4165(84)90387-8.

Stratakos, A.C.; Sima, F.; Ward, P.; Linton, M.; Kelly, C.; Pinkerton, L.; Stef, L.; Pet, I.;
Corcionivoschi, N. 2018. The in vitro effect of carvacrol, a food additive, on the pathogenicity of O157 and non-O157 Shiga-toxin producing Escherichia coli. Food Control, 84: 290í 296. https://dx.doi.org/10.1016/j.foodcont.2017.08.014.

Talpur, A.D.; Ikhwanuddin, M.; Bolong, A.M.A. 2013. Nutritional effects of ginger (Zingiber officinale Roscoe) on immune response of Asian sea bass, Lates calcarifer (Bloch) and disease resistance against Vibrio harveyi. Aquaculture, 400í 401: 46í 52. https://dx.doi.org/10.1016/j.aquaculture.2013.02.043.

Van wyk, P.; Scarpa, J. 1999. Water Quality Requirements and Management. In: Van Wyk, P. et al. (Eds.). Farming Marine Shrimp in Recirculating Freshwater Systems. Florida: Department of Agriculture and Consumer Services. 141í 162p.

Volpatti, D.; Bulfon, C.; Tulli, F.; Galeotti, M. 2013. Growth parameters, innate immune response and resistance to Listonella (Vibrio) anguillarum of Dicentrarchus labrax fed carvacrol supplemented diets. Aquaculture Research, 45(1): 31í 44. https://dx.doi.org/10.1111/j.1365-2109.2012.03202.x.

Zheng, Z.L.; Tan, J.Y.W.; Liu, H.Y.; Zhou, X.H.; Xiang, X.; Wang, K.Y. 2009. Evaluation of oregano essential oil (Origanum heracleoticum L.) on growth, antioxidant effect and resistance against Aeromonas hydrophila in channel catfish (Ictalurus punctatus). Aquaculture, 292(3í 4): 214í 218. https://dx.doi.org/10.1016/j.aquaculture.2009.04.025.

Zhou, Q.C.; Zeng, W.P.; Wang, H.L.; Wang, T.; Wang, Y.L.; Xie, F.J. 2012. Dietary arginine requirement of juvenile Pacific white shrimp, Litopenaeus vannamei. Aquaculture, 364í 365: 252í 258. http://dx.doi.org/10.1016/j.aquaculture.2012.08.020.

Downloads

Publicado

2021-09-13

Edição

Seção

Artigo cientí­fico

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 > >>