Produção do camarão-branco-do-pacífico em sistema de bioflocos com diferentes estratégias de manejo alimentar

Autores

  • Weverson Ailton da Silva Universidade Federal de Santa Catarina, Departamento de Aquicultura, Laboratório de Camarões Marinhos – Florianópolis (SC), Brazil. https://orcid.org/0000-0001-5085-7166
  • Ana Paula Mariane de Morais Universidade Federal de Santa Catarina, Departamento de Aquicultura, Laboratório de Camarões Marinhos – Florianópolis (SC), Brazil. https://orcid.org/0000-0002-6639-823X
  • Julianna Paula do Vale Figueiredo Universidade Federal de Santa Catarina, Departamento de Aquicultura, Laboratório de Camarões Marinhos – Florianópolis (SC), Brazil. https://orcid.org/0000-0002-9585-9381
  • Ramires Eloise Queiroz Rafael Universidade Federal de Santa Catarina, Departamento de Aquicultura, Laboratório de Camarões Marinhos – Florianópolis (SC), Brazil. https://orcid.org/0000-0002-2368-0075
  • Carlos Yure Barbosa de Oliveira Universidade Federal Rural de Pernambuco, Departamento de Pesca e Aquicultura, Laboratório de Produção de Alimento Vivo – Recife (PE), Brazil https://orcid.org/0000-0001-9237-1869
  • Felipe do Nascimento Vieira Universidade Federal de Santa Catarina, Departamento de Aquicultura, Laboratório de Camarões Marinhos – Florianópolis (SC), Brazil. https://orcid.org/0000-0001-9794-8671

DOI:

https://doi.org/10.20950/1678-2305/bip.2022.48.e707

Palavras-chave:

Litopenaeus vannamei, ração, tabelas de alimentação

Resumo

No presente trabalho foram analisadas diferentes modelos para ajustes nas taxas de alimentação para a produção do camarão camarão-branco-do-pacífico (Litopenaeus vannamei) em sistema de bioflocos. Os camarões foram povoados com peso inicial de 4,21 ± 0,09 g na densidade de 250 camarões m-3, e alimentados seguindo as diferentes metodologias durante 60 dias. A primeira seguiu a tabela de Van-Wyk, considerando as taxas mínimas (MIN) e máximas (MAX) de ração. A segunda foi de acordo com dois valores estimados do cálculo de conversão alimentar (FCR de 1.1 e 1.5), baseado na metodologia determinada por Garzade Yta et al. (2004). Foi adotado um delineamento experimental inteiramente casualizado, composto por quatro tratamentos (MIN, MAX, FCR 1.1 e FCR 1.5) com 4 repetições cada. Foram avaliados o desempenho zootécnico, os parâmetros físicos e químicos da água e a produção de sólidos do sistema. O tratamento que utilizava quantidades mínimas de ração determinada pela tabela apresentou uma melhor conversão alimentar, sobrevivência, utilizando uma menor quantidade de ração e gerando uma menor quantidade de resíduos. Embora a estratégia de alimentação utilizando os valores mínimos da tabela tenha apresentado melhores resultados, ainda é necessário o aprimoramento dessas estratégias, pois o sistema de Bioflocos é um sistema que possui variações e seus ajustes devem ser feitos de acordo com as interações do sistema.

Biografia do Autor

Ana Paula Mariane de Morais, Universidade Federal de Santa Catarina, Departamento de Aquicultura, Laboratório de Camarões Marinhos – Florianópolis (SC), Brazil.

Universidade Federal de Santa Catarina -  UFSC, Departamento de Aquicultura, Laboratório de Camarí­µes Marinhos -  LCM. Rua das Coroas, 503, Barra da Lagoa, 88.061-600, Florianópolis, SC, Brasil.

Julianna Paula do Vale Figueiredo, Universidade Federal de Santa Catarina, Departamento de Aquicultura, Laboratório de Camarões Marinhos – Florianópolis (SC), Brazil.

Universidade Federal de Santa Catarina -  UFSC, Departamento de Aquicultura, Laboratório de Camarí­µes Marinhos -  LCM. Rua das Coroas, 503, Barra da Lagoa, 88.061-600, Florianópolis, SC, Brasil.

Ramires Eloise Queiroz Rafael, Universidade Federal de Santa Catarina, Departamento de Aquicultura, Laboratório de Camarões Marinhos – Florianópolis (SC), Brazil.

Universidade Federal de Santa Catarina -  UFSC, Departamento de Aquicultura, Laboratório de Camarí­µes Marinhos -  LCM. Rua das Coroas, 503, Barra da Lagoa, 88.061-600, Florianópolis, SC, Brasil.

Carlos Yure Barbosa de Oliveira, Universidade Federal Rural de Pernambuco, Departamento de Pesca e Aquicultura, Laboratório de Produção de Alimento Vivo – Recife (PE), Brazil

Universidade Federal Rural de Pernambuco -  UFRPE, Departamento de Pesca e Aquicultura, Laboratório de Produção de Alimento Vivo -  LAPAVI. Rua Dom Manuel de Medeiros, s/n - Dois Irmãos, 52171-900, Recife, PE.

Felipe do Nascimento Vieira, Universidade Federal de Santa Catarina, Departamento de Aquicultura, Laboratório de Camarões Marinhos – Florianópolis (SC), Brazil.

Universidade Federal de Santa Catarina -  UFSC, Departamento de Aquicultura, Laboratório de Camarí­µes Marinhos -  LCM. Rua das Coroas, 503, Barra da Lagoa, 88.061-600, Florianópolis, SC, Brasil.

Referências

REFERENCES

American Public Health Association (APHA) 2005. Standard Methods for the Examination of Water and Wastewater. 21th ed. American Public Health Association, Washington, D.C.

American Public Health Association (APHA) 2017. Standard Methods for the Examination of Water and Wastewater. 23th ed. American Public Health Association, Washington, D.C.

Araujo, M.C.; Valenti, W.C. 2005. Manejo alimentar de pós-larvas do camarão-da-amazônia, Macrobrachium amazonicum, em berçário I. Acta Scientiarum. Animal Sciences, 27(1): 67-72.

Avnimelech, Y. 2007. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264(1-4): 140-147. https://doi.org/10.1016/j.aquaculture.2006.11.025

Ballester, E.L.C.; Wasielesky, W.; Cavalli, R.O.; Abreu, P.C. 2007. Nursery of the pink shrimp Farfantepenaeus paulensis in cages with artificial substrates: biofilm composition and shrimp performance. Aquaculture, 269(1-4): 355-362. https://doi.org/10.1016/j.aquaculture.2007.04.003

Barak, Y.; Cytryn, E.; Gelfand, I.; Krom, M.; Rijn, J.V. 2003. Phosphorus removal in a marine prototype, recirculating aquaculture system. Aquaculture, 220(1-4): 313-326. https://doi.org/10.1016/S0044-8486(02)00342-3

Braga, A.; Magalhães, V.; Hanson, T.; Morris, T.C.; Samocha, T.M. 2016. The effects of feeding commercial feed formulated for semi-intensive systems on Litopenaeus vannamei production and its profitability in a hyper-intensive biofloc-dominated system. Aquaculture Reports, 3: 172-177. https://doi.org/10.1016/j.aqrep.2016.03.002

Carvalho, E.A.; Nunes, A.J.P. 2006. Effects of feeding frequency on feed leaching loss and grow-out patterns of the white shrimp Litopenaeus vannamei fed under a diurnal feeding regime in pond enclosures. Aquaculture, 252(2-4): 494-502. https://doi.org/10.1016/j.aquaculture.2005.07.013

Casillas-Hernández, R.; Nolasco, S.H.; García, G.T.; Carrillo, F.O.; Páez, O.F. 2007. Water quality, chemical fluxes and production in semi-intensive Pacific white shrimp (Litopenaeus vannamei) culture ponds utilizing two different feeding strategies. Aquacultural Engineering, 36(2): 105-114. https://doi.org/10.1016/j.aquaeng.2006.09.001

Cohen, J.; Samocha, T.M.; Fox, J.M.; Gandy, R.L.; Lawrence, A.L. 2005. Characterization of water quality factors during intensive raceway production of juvenile L. vannamei using limited discharge and biosecure management tools. Aquacultural Engineering, 32(3-4): 425-442. https://doi.org/10.1016/j.aquaeng.2004.09.005

Crab, R.; Lambert, A.; Defoirdt, T.; Bossier, P.; Verstraete, W. 2010. The application of bioflocs technology to protect brine shrimp (Artemia franciscana) from pathogenic Vibrio harveyi. Journal of Applied Microbiology, 109(5): 1643-1649. https://doi.org/10.1111/j.1365-2672.2010.04791.x

Davis, D.A.; Venero, J.A. 2005. Rethinking feeding for cultured shrimp. Global Aquaculture Advocate, 8: 78-81.

Ebeling, J.M.; Timmons, M.B.; Bisogni, J.J. 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture, 257(1-4): 346-358. https://doi.org/10.1016/j.aquaculture.2006.03.019

Emerenciano, M.; Cuzon, G.; Paredes, A.; Gaxiola, G. 2013. Evaluation of biofloc technology in pink shrimp Farfantepenaeus duorarum culture: growth performance, water quality, microorganisms profile and proximate analysis of biofloc. Aquaculture International, 21(6): 1381-1394. https://doi.org/10.1007/s10499-013-9640-y

Ferreira, G.S.; Santos, D.; Schmachtl, F.; Machado, C.; Fernandes, V.; Bögner, M.; Schleder, D.D.; Seiffert, W.Q.; Vieira, F.N. 2021. Heterotrophic, chemoautotrophic and mature approaches in biofloc system for Pacific white shrimp. Aquaculture, 533: 736099. https://doi.org/10.1016/j.aquaculture.2020.736099

Furtado, P.S.; Campos, B.R.; Serra, F.P.; Klosterhoff, M.; Romano, L.A.; Wasielesky Jr., W. 2015. Effects of nitrate toxicity in the Pacific white shrimp, Litopenaeus vannamei, reared with biofloc technology (BFT). Aquaculture International, 23: 315-327. http://doi.org/10.1007/s10499-014-9817-z

Furtado, P.S.; Poersch, L.H.; Wasielesky Jr., W. 2011. Effect of calcium hydroxide, carbonate and sodium bicarbonate on water quality and zootechnical performance of shrimp Litopenaeus vannamei reared in bio-flocs technology (BFT) systems. Aquaculture, 321(1-2): 130-135. https://doi.org/10.1016/j.aquaculture.2011.08.034

Gaona, C.A.P.; Poersch, L.H.; Krummenauer, D.; Foes, G.K.; Wasielesky, W.J. 2011. O efeito da remoção de sólidos na qualidade da água, crescimento e sobrevivência de Litopenaeus vannamei em um sistema de cultura tecnológica biofloco. International Journal of Recirculating Aquaculture, 12(1): 54-73. https://doi.org/10.21061/ijra.v12i1.1354

Garzade Yta, A.; Rouse, D.B.; Davis, D.A. 2004. Influence of nursery period on the growth and survival of Litopenaeus vannamei under pond production conditions. Journal of the World Aquaculture Society, 35(3): 357-365. https://doi.org/10.1111/j.1749-7345.2004.tb00099.x

Grasshoff, P. 1983. Métodos de análise da água do mar. Verlag Chemie. FRG, 419: 61-72.

Lin, Y.-C.; Chen, J.-C. 2001. Acute toxicity of ammonia on Litopenaeus vannamei Boone juveniles at different salinity levels. Journal of Experimental Marine Biology and Ecology, 259(1): 109-119. https://doi.org/10.1016/s0022-0981(01)00227-1

Lin, Y.-C.; Chen, J.-C. 2003. Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture, 224(1-4): 193-201. https://doi.org/10.1016/s0044-8486(03)00220-5

Martinez‐Cordova, L.R.; Villarreal‐Colmenares, H.; Porchas‐Cornejo, M.A. 1998. Response of biota to aeration rate in low water exchange ponds farming white shrimp, Penaeus vannamei Boone. Aquaculture Research, 29(8): 587-593. https://doi.org/10.1046/j.1365-2109.1998.00246.x

Mishra, J.K.; Samocha, T.M.; Patnaik, S.; Speed, M.; Gandy, R.L.; Ali, A.M. 2008. Performance of an intensive nursery system for the Pacific white shrimp, Litopenaeus vannamei, under limited discharge condition. Aquacultural Engineering, 38(1): 2-15. https://doi.org/10.1016/j.aquaeng.2007.10.003

Nunes, A.J.P.; Parsons, G.J. 2006. A computer-based statistical model of the food and feeding patterns of the Southern brown shrimp Farfantepenaeus subtilis under culture conditions. Aquaculture, 252(2-4): 534-544. https://doi.org/10.1016/j.aquaculture.2005.07.020

Quintero, H.E.; Roy, L.A. 2010. Practical feed management in semi-intensive systems for shrimp culture. In: Alday-Sanz, I.V. (ed.). The Shrimp Book. Replika Press, Sonipat; Nottingham University Press, Nottingham, p. 443-453.

Ray, A.J.; Lewis, B.L.; Browdy, C.L.; Leffler, J.W. 2010. Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant-based feed in minimal-exchange, superintensive culture systems. Aquaculture, 299(1-4): 89-98. https://doi.org/10.1016/j.aquaculture.2009.11.021

Rego, M.A.S.; Sabbag, O.J.; Soares, R.; Peixoto, S. 2017. Risk analysis of the insertion of biofloc technology in a marine shrimp Litopenaeus vannamei production in a farm in Pernambuco, Brazil: a case study. Aquaculture, 469: 67-71. https://doi.org/10.1016/j.aquaculture.2016.12.006

Samocha, T.M.; Patnaik, S.; Speed, M.; Ali, A.M.; Burger, J.M.; Almeida, R.V.; Ayub, Z.; Harisanto, M.; Horowitz, A.; Brock, D.L. 2007. Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacultural Engineering, 36(2): 184-191. https://doi.org/10.1016/j.aquaeng.2006.10.004

Schveitzer, R.; Arantes, R.; Costódio, P.F.S.; Santos, C.M.E.; Arana, L.V.; Seiffert, W.Q.; Andreatta, E.R. 2013. Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquacultural Engineering, 56: 59-70. https://doi.org/10.1016/j.aquaeng.2013.04.006

Sedgwick, R.W. 1979. Effect of ration size and feeding frequency on the growth and food conversion of juvenile Penaeus merguiensis de Man. Aquaculture, 16(4): 279-298. https://doi.org/10.1016/0044-8486(79)90069-3

Smith, D.M.; Burford, M.A.; Tabrett, S.J.; Irvin, S.J.; Ward, L. 2002. The effect of feeding frequency on water quality and growth of the black tiger shrimp (Penaeus monodon). Aquaculture, 207(1-2): 125-136. https://doi.org/10.1016/s0044-8486(01)00757-8

Strickland, J.D.H.; Parsons, T.R. 1972. A practical handbook of seawater analysis. Ottawa: Fishery Research Board Canada, Bulletin 167, 310 p.

Van Wyk, P.; Scarpa, J. 1999. Water quality requirement and management. In: Van Wyk, P. (ed.). Farming Marine Shrimp in Recirculating Freshwater Systems. Harbor Branch Oceanographic Institution, Florida, p. 141-162.

Velasco, M.; Lawrence, A.L; Castille, F.L. 1999. Effect of variations in daily feeding frequency and ration size on growth of shrimp, Litopenaeus vannamei (Boone), in zero-water exchange culture tanks. Aquaculture, 179(1-4): 141-148. https://doi.org/10.1016/s0044-8486(99)00158-1

Wasielesky, W.; Froes, C.; Fóes, G.; Krummenauer, D.; Lara, G.; Poersch, L. 2013. Nursery of Litopenaeus vannamei Reared in a Biofloc System: the effect of stocking densities and compensatory growth. Journal of Shellfish Research, 32(3): 799-806. https://doi.org/10.2983/035.032.0323

Wasielesky Jr., W.; Atwood, H.; Stokes, A.; Browdy, C.L. 2006. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, 258(1-4): 396-403. https://doi.org/10.1016/j.aquaculture.2006.04.030

Downloads

Publicado

2023-02-02

Edição

Seção

Artigo cientí­fico

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 > >>